
www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Building Cross-
Platform Apps 
Using Titanium™, 
Alloy, and 
Appcelerator® 
Cloud Services
Aaron Saunders

www.it-ebooks.info

http://www.it-ebooks.info/


I dedicate this book to my father, Dennis Francis Saunders Sr., who supported me in my interest 
with computers way before computers where commonplace in Â�society. He bought me my first 

Â�computer—a Timex Sinclair—and I also remember the TRS-80 from Radio Shack. He passed 
away before the book could be finished, but he is the reason I became involved with computers.

This edition first published 2015

© 2015 Aaron Saunders

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to 
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, 
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form 
or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, 
Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in 
electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and prod-
uct names used in this book are trade names, service marks, trademarks or registered trademarks of their respective own-
ers. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to 
provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that 
the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, 
the services of a competent professional should be sought.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its 
affiliates in the United States and/or other countries, and may not be used without written permission. All other trade-
marks are the property of their respective owners. John Wiley & Sons, Ltd. is not associated with any product or vendor 
mentioned in the book.

A catalogue record for this book is available from the British Library.

ISBN 978-1-118-67325-6 (paperback); ISBN 978-1-118-67324-9 (ePub); 978-1-118-67322-5 (ePDF)

Set in 10/12.5 ChaparralPro-Light by TCS/SPS

Printed in the United States by Bind-Rite

www.it-ebooks.info

http://www.wiley.com
http://www.it-ebooks.info/


Publisher’s Acknowledgements
Some of the people who helped bring this book to market include the following:

Editorial and Production

VP Consumer and Technology  
Publishing Director:
Michelle Leete

Associate Director–Book Content 
Management:
Martin Tribe

Associate Publisher:
Chris Webb

Project Editor:
Kezia Endsley

Copy Editor:
Kezia Endsley

Technical Editor:
Chaim Krause

Editorial Manager:
Rev Mengle

Senior Project Editor:
Sara Shlaer

Editorial Assistant:
Claire Johnson

Marketing

Marketing Manager:
Lorna Mein

Assistant Marketing Manager:
Dave Allen

www.it-ebooks.info

http://www.it-ebooks.info/


About the Author
AARON SAUNDERS is the CEO/Founder of Clearly Innovative Inc., a minority-owned digi-
tal solutions provider headquartered in Washington DC with offices in New York City. The 
firm shapes ideas into viable  products and transforms clients’ existing technologies into 
stunning solutions. Clearly Innovative is a leader in early adaption and implementation of 
cutting edge technologies, from mobile strategy and design to developing innovative web-
based solutions. Clearly Innovative provides support and expertise through services focused 
on product strategy, user experience, design, and development.

Aaron is an experienced software developer with over 30 years of experience and has strong 
technical, communication, and collaboration abilities. He is highly adept at helping organiza-
tions add business value using mobile and web applications.

Aaron has a BA in Computer Science from Ohio Wesleyan University and an MBA with con-
centrations in Information Technology Strategy and Marketing from the NYU Stern School 
of Business.

Acknowledgments
This book would never have been started without the encouragement of Kwasi Frye to keep 
pressuring me to respond to requests to write a book.

This book would have never been completed without the patience and understanding of my 
wife Andrea Saunders who consistently gave me the time I needed to get this done, which 
was above and beyond the long hours of running a small digital agency, when I got home 
nights and sometime the whole weekend was spent writing code, reviewing chapters, and 
retesting the application for the book.

Thank you to Appcelerator for the platform you provided for me to start Clearly Innovative 
on, and thanks to all of the clients we worked with to develop mobile solutions and expand 
my knowledge of the Appcelerator platform and mobile application development.

Thanks to the team at Wiley who has been patient with me through the changes in the 
underlying Appcelerator platform that caused chapter rewrites, changes in the mobile user 
interface that required new screenshots, and delays in scheduling due to personal matters.

Thanks to Chaim Krause for being a great technical reviewer. I hope you learned something 
through the process.

www.it-ebooks.info

http://www.it-ebooks.info/


Contents

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 1
Installing and Configuring Appcelerator. . . . . . . . . . . . . . . . . . . . . . . 3

Setting Up Titanium. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . .                                                          3
Installing Titanium on the Mac . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . .                                                4

Installing Titanium Studio IDE. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                              4
Installing Xcode. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . .                                                           7
Installing the iOS Simulator. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . .                                                 9
Installing the Titanium Command-Line Interface to Use an Alternate IDE. . . . . . . .         10
Installing the Android SDK. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                                                 10

Installing Titanium Studio on Windows. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . .                                         11
Installing Titanium Studio. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . .                                                  11
Installing Android SDK. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . .                                                     13

Summary . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                                                                   14

CHAPTER 2
Introducing Appcelerator Cloud Services. . . . . . . . . . . . . . . . . . . . . 15

Using the Appcelerator Cloud Services Console. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . .                                   17
Using Appcelerator Cloud Services REST API. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“                                     25

Installing curl on a Device . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . .                                                  26
Simple Test with the REST API. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . .                                              26

Integrating Appcelerator Cloud Services. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . .                                         31
Simple Example of Integrating Appcelerator Cloud Services. . . . . . . . . . . . . . . . . .å°“ . . . . .                        34
Summary . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                                                                   42

CHAPTER 3
Appcelerator Titanium Alloy Overview. . . . . . . . . . . . . . . . . . . . . . . 43

Understanding the Model-View-Controller (MVC) Framework . . . . . . . . . . . . . . . . . .å°“ . .                     44
Using Appcelerator Alloy with the MVC Framework . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                              47

Backbone.js. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . .                                                               50
Backbone.js in Alloy: Models and Collections. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . .                                  50

Using Sync Adapters. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                                          54
Basic Sync Adapter Construction . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . .                                            54
Backbone Model Events. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . .                                                    55

www.it-ebooks.info

http://www.it-ebooks.info/


vi B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

Model-View Data Binding. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . .                                                     56
Demo Project for Model View Binding. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                        56
Creating the Model File . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . .                                                    57
Creating the Collection Object. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . .                                               64

Data Binding with Models in Appcelerator Titanium Alloy. . . . . . . . . . . . . . . . . .å°“ . . . . . .                         69
Updating the cars.js Controller File . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . .                                          69
Creating the New Controller/View for the Detail Display. . . . . . . . . . . . . . . . . .å°“ . . . . .                        70
Completing the Controller for the Detail View. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . .                                 71

Creating Widgets. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . .                                                             74
Creating a More Complex Widget. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . .                                            78

Summary . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                                                                   80

CHAPTER 4
Building a Cross-Platform Social Photo-Sharing Application. . . . . . . . 81

Using Balsamiq to Design Mockups. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . .                                             81
Walking Through the Phone-Sharing App. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                        89

User Accounts . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . .                                                            90
Camera . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                                                  90
Photo Uploading . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                                          90
Social Integration with Facebook . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . .                                            91
Finding Friends. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . .                                                           91
Commenting and Rating of Media. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . .                                           91
Push Notifications. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . .                                                         92
Application Flow . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                                          92

Summary . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                                                                   92

CHAPTER 5
Development Process for Cross-Platform Apps. . . . . . . . . . . . . . . . . 93

Creating the Project for This Chapter. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . .                                            93
Preconfiguring Appcelerator Cloud Services. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ .                                      96
Creating the User Interface. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . .                                                    99

Creating the Tab Group Files. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                                99
Enabling the Camera Functionality on the Feed Tab. . . . . . . . . . . . . . . . . .å°“ . . . . . . . .                          104
Adding a Custom Table Row to TableView . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . .                                  106

Integrating the Camera Functionality into the Application. . . . . . . . . . . . . . . . . .å°“ . . . . .                       109
Accessing the Device Camera in Appcelerator. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . .                                109
Adding Camera API Calls to Feed Controller. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . .                                 110

www.it-ebooks.info

http://www.it-ebooks.info/


viiT A B L E  O F  C O N T E N T S

Revisiting the FeedRow Controller. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . .                                         111
Revisiting the Feed Controller to Add the Rows to the Table . . . . . . . . . . . . . . . . . .å°“                  112
Adding Some Style to the Feed Table. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                       112

Using the Android ActionBar for the Camera Button. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . .                            114
Setting Up the index.xml View to Support the ActionBar. . . . . . . . . . . . . . . . . .å°“ . . . .                      115
Modifying the index.xml View to Support the ActionBar. . . . . . . . . . . . . . . . . .å°“ . . . .                      115

Adding the Alloy Sync Adapter and Appcelerator Cloud Services. . . . . . . . . . . . . . . . . .å°“                  116
Creating the User Model. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . .                                                  116
Extending Alloy Models. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . .                                                   117
Logging the User In. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“                                                       117
Creating Appcelerator Cloud Service Sync Adapter . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . .                           120
Creating the Photo Model . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                                                121
Modifying the ACS Sync Adapter to Support the Photo Model. . . . . . . . . . . . . . . . .                  122
Model and Sync Adapter Working Together. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . .                                 124

Summary . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                                                 134

CHAPTER 6
Integrating Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Creating the Comment Table View Layout. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ .                                     135
Rendering the Rows Using a Different View and Controller. . . . . . . . . . . . . . . . . .å°“ . .                    136
Styling the Views to Match the Mockups . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . .                                   137

Adding Logic to the Controllers . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . .                                              139
Calling the New Controller from feed.js. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ .                                     139
Coding the comment.js Controller. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . .                                          140
Cross-Platform Support in Comment View. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . .                                  140
Coding the commentRow Controller. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                       142

Adding Models and Collections for Querying Comments . . . . . . . . . . . . . . . . . .å°“ . . . . . .                        142
Finishing the Comment Controllers . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . .                                          146

The commentRow Controller. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . .                                              147
Connecting the Dots . . . Showing the Comment List. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . .                            148

Back to the feed and feedRow Controllers. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . .                                   149
Adding a New Comment to a Photo. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . .                                           152

Creating a New Comment Controller and View. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                               152
Adding Code to the Comment Input Controller. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                              154
Back to the Comment.js Controller. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . .                                         157
Saving the Comment and Updating the Table . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . .                               158

Deleting Comments . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . .                                                        163
Summary . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                                                 166

www.it-ebooks.info

http://www.it-ebooks.info/


viii B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

CHAPTER 7
Integrating User Accounts with Appcelerator Cloud Services. . . . . . . 167

Adding the Login User Interface. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . .                                               167
Updating the User Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177

User Create Account Method. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . .                                              178
User Logout Method. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . .                                                     179
Additional User Management Methods. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ .                                     180

Updating the Index Controller. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                               181
Set Up the Basics in the Index Controller . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . .                                   181

Creating the Login Controller. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                                                184
Logging in the User. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“                                                      185
Creating the User Account. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                                                186

Using Facebook for Account Creation. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . .                                         188
Setting Up an Application to Use the Facebook Module. . . . . . . . . . . . . . . . . .å°“ . . . . .                       188
Facebook Button in the login.xml File. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . .                                      189
Facebook Method in the User Model. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                       189
Facebook Handler in Login Controller. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . .                                      190
Updating User with Facebook Information. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . .                                   194
Check for Facebook Authentication on Startup. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                               195
Logging Out of Facebook. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . .                                                 196

Summary . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                                                 196

CHAPTER 8
Working with Friends and Followers . . . . . . . . . . . . . . . . . . . . . . . 197

Creating the CommonJS Library in Alloy. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . .                                      197
Adding the Code . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . .                                                        198

Adding the Friends User Interface. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . .                                            200
Finishing Up the ListView with Style. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                       205

Introduction to Appcelerator Cloud Services Friends Object. . . . . . . . . . . . . . . . . .å°“ . . . .                      208
Modifying the ACS Sync Adapter to Support User Queries . . . . . . . . . . . . . . . . . .å°“ . .                     209
Modifying the ACS Sync Adapter to Support Friends. . . . . . . . . . . . . . . . . .å°“ . . . . . . .                         210
Creating the Friend Relationship . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . .                                          211
Finding Friend Relationships Based on a User’s ID. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . .                           212
Removing Friend Relationships from a User. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . .                                  212
Extending the User Model to Support User-Specific Friends Functionality. . . . . . .       213

Integrating ListView Data-Binding with Friends Collections. . . . . . . . . . . . . . . . . .å°“ . . . .                      216
Revisiting the friends.xml File. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . .                                             216

www.it-ebooks.info

http://www.it-ebooks.info/


ixT A B L E  O F  C O N T E N T S

Integrating ListView Data-Binding with the Friends Controller. . . . . . . . . . . . . . . . . .å°“ .                   217
Displaying All Users . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . .                                                     218
Displaying the Friends List . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                               221

Working with User and Friends Lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
Removing a Friend from the Friends List . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . .                                   226

Updating the Application to Be Friend- and Location-Aware . . . . . . . . . . . . . . . . . .å°“ . . .                      227
Summary . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                                                 228

CHAPTER 9
Working with Maps and Locations. . . . . . . . . . . . . . . . . . . . . . . . . 229

Associating GPS Information When Saving a Photo. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                             229
Modifying the Photo Model. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                               229
Getting GPS Information from a Device. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“                                    230
Creating a CommonJS Library for Geolocation . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                               230
Updating the Feed Controller to Add Location to a Photo. . . . . . . . . . . . . . . . . .å°“ . . .                      233

Displaying the Photo Location on a Map . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . .                                      235
Android Support for Google Maps v2. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                       235
Adding the Map Component to MapView XML. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                              238

Displaying a Map of Photos Near Your Location. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . .                                245
Querying ACS Photo Objects Using Your Current Location. . . . . . . . . . . . . . . . . .å°“ . .                    246
Updating the User Interface to Show a Map View. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . .                            247
Changes in the feed.js Controller . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . .                                          251
Responding to Clicks on Map Annotations. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . .                                  256

Summary . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                                                 264

CHAPTER 10
Sharing via Facebook, Email, and Twitter . . . . . . . . . . . . . . . . . . . 265

Creating the CommonJS Library for Sharing Functions. . . . . . . . . . . . . . . . . .å°“ . . . . . . . .                          265
Facebook Permissions and Reauthorization. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“                                    269

Sharing to the Facebook Wall . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . .                                             271
Sharing to the Facebook Album . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . .                                           273
Revisiting and Refactoring the Progress Window Library. . . . . . . . . . . . . . . . . .å°“ . . . .                      276
Sharing to a Facebook Album . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . .                                             279

Sharing an Image as an Email Attachment. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ .                                     280
Twitter Integration with the social.js Module . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . .                                  284

Setting Up Your Twitter Developer Account. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . .                                 285
Adding social.js to Your Project. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . .                                            285

www.it-ebooks.info

http://www.it-ebooks.info/


x B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

Adding the shareImage Function . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . .                                          285
Including the social.js Library in the Application. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                             287
Adding Functionality to the sharing.js Library. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . .                               288

Summary . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                                                 290

CHAPTER 11
Push Notifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Setting Up Push Notifications on Your Development Platform . . . . . . . . . . . . . . . . . .å°“ .                   292
Apple Push Notifications Configuration . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“                                    292
Google Push Notifications Configuration . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . .                                   292

Configuring Push Notifications in Appcelerator Cloud Services. . . . . . . . . . . . . . . . . .å°“ .                   292
Creating the Push Notifications Library in an Application. . . . . . . . . . . . . . . . . .å°“ . . . . . .                        293

Creating the pushNotifications.js Library. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . .                                   295
Getting the iOS Token . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . .                                                   295
Getting the Android Token . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                               297
Registering Callbacks. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . .                                                     298

Integrating Push in Your Application . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . .                                          300
Registering for Push Notifications When the User Logs In. . . . . . . . . . . . . . . . . .å°“ . . .                     301
Sending Notifications Using the Appcelerator Cloud Services Console . . . . . . . . . .           303
Sending a Push Notification. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                               304
Sending a Notification When Posting a Photo . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . .                               306
Sending a Notification When Commenting on Photos. . . . . . . . . . . . . . . . . .å°“ . . . . . .                        308
Sending a Notification When Adding a New Friend. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . .                           310
Unregistering from Push Notifications When Logging Out. . . . . . . . . . . . . . . . . .å°“ . .                     312

Further Integration of Push Notifications in Your Application. . . . . . . . . . . . . . . . . .å°“ . .                    313
Summary . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                                                 314

CHAPTER 12
Settings and User Management. . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Getting Started: View, Style, Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315
Editing the View. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                                         316
Editing the User Information in the Header Section. . . . . . . . . . . . . . . . . .å°“ . . . . . . . .                           316
Editing the User Information Style. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . .                                          317

Handling Logout on Android and iOS. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . .                                         321
Logging the User Out . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . .                                                    323
Logging Out of Appcelerator Push Notifications. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                             323

www.it-ebooks.info

http://www.it-ebooks.info/


xiT A B L E  O F  C O N T E N T S

Logging Out from Appcelerator Cloud Services . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                               324
Logging Out from Social Media. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . .                                            324

Returning to the Login Screen . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                               324
Setting the User’s Profile Picture. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . .                                           325

Adding a Few Performance Enhancements . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“                                    329
Returning to the Feed Controller for Performance and UI Enhancement. . . . . . . .        333
Additional Information from the User Account. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . .                              335
Adding Content to the Main View in the Settings Tab . . . . . . . . . . . . . . . . . .å°“ . . . . . .                        337
Platform-Specific User Interface for Switch Control . . . . . . . . . . . . . . . . . .å°“ . . . . . . . .                          338
Handling the Switch Initialization Values. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . .                                   341
Displaying Push Notification Status. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . .                                        344
Changing the Push Notification Status . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ .                                     346

Summary . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                                                 347

CHAPTER 13
Going to Market: Deploying to the App Store  
and to Google Play . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

Process Overview . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . .                                                          349
Registering for a Developer Account . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                       349
Signing Your Application. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . .                                                 349
Creating an App Record and Filling Out Metadata. . . . . . . . . . . . . . . . . . . . . . . . . . . .350
Publishing Your Binary to the Store. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . .                                        350

iOS App Store Submission Process. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . .                                            350
Signing Up for an iOS Developer Account. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . .                                   350
Signing Your iOS Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350
Creating an iTunes Connect Record. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . .                                         351
Publishing from Titanium Studio. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . .                                          351

Uploading Your Binary to the App Store. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                        355
Google Play Submission Process. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . .                                              356

Signing Up for a Google Play Developer Account. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                             356
Generating a Keystore for Publishing. . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . .                                       358

Publishing to Google Play . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . .                                                   359
Summary . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . . . . . . . . .å°“ . . . . . . . . . . .                                                                 362

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  363

www.it-ebooks.info

http://www.it-ebooks.info/


www.it-ebooks.info

http://www.it-ebooks.info/


Introduct ion

THIS BOOK IS a high-level overview of using Appcelerator Titanium Alloy and Appcelerator 
Cloud Services to build native, cross-platform solutions in JavaScript. There is and will prob-
ably for a long time be an  argument  about the benefits of cross-platform solutions like 
Appcelerator, yet competitors continue to enter the field.

First and foremost, Appcelerator Titanium Alloy is not Phonegap; Appcelerator renders 
native user interfaces and provides a robust and extensible framework of APIs to interact 
with the native device on iOS, Android, Blackberry, and Windows Phone. Phonegap uses the 
mobile device’s web browser to render the user interface of the application and a collection of 
modules to interact with the device’s native capabilities. It is an acceptable solution for some, 
but I choose to focus on Appcelerator in my business, Clearly Innovative, because I believed, 
from a business and cost perspective, that we could provide the client with the native perfor-
mance at a much better price point.

This book walks you through the process of building a photo-sharing application for the iOS 
and Android platforms on the Appcelerator Platform using the powerful new Alloy frame-
work. This application integrates Appcelerator Platform’s  MBaaS (mobile backend-as-a-Â�
service) and Appcelerator Cloud Services to create users, store photos, and implement push 
notifications in mobile applications.

The Appcelerator Community is very active through the Q&A forums, specific websites such 
as http://www.tidev.io/, and community-driven conferences like http://ticonf.
org/. The Appcelerator company website documentation, training videos, and open sourced 
samples can provide you with additional supporting materials to help you get started in 
building your own great solution.

www.it-ebooks.info

http://www.tidev.io/
http://ticonf.org/
http://ticonf.org/
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M2

Building a great mobile solution is a fun yet sometimes challenging experience. It is my hope 
that this book makes the process a bit more enjoyable and manageable.

—Aaron K. Saunders

@aaronksaunders

https://github.com/aaronksaunders

www.it-ebooks.info

https://github.com/aaronksaunders
http://www.it-ebooks.info/


Chapter 1
Instal l ing  and Conf igur ing 
A ppcelerator

THIS CHAPTER BRIEFLY outlines the installation process for the Appcelerator tools. 
More detailed step-by-step instructions can be found on the Appcelerator site at  
http://docs.appcelerator.com/titanium/3.0/#%21/guide/Setting_up_Studio- 

section-37540095_SettingupStudio-installingstudio.

Setting Up Titanium
To install Titanium Studio, download the installer from the Appcelerator website. You will 
need to log in using your Appcelerator credentials, so register for an account if you haven’t 
done so already.

After launching Titanium Studio, you will need to configure native SDKs for each platform you 
want to support. Android works on both Mac and PC, but to develop for iOS you will need a 
Mac. See http://docs.appcelerator.com/titanium/3.0/#!/guide/Quick_Start 
for more information.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/3.0/#%21/guide/Setting_up_Studio-section-37540095_SettingupStudio-installingstudio
http://docs.appcelerator.com/titanium/3.0/#%21/guide/Setting_up_Studio-section-37540095_SettingupStudio-installingstudio
http://docs.appcelerator.com/titanium/3.0/#!/guide/Quick_Start
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M4

Installing Titanium on the Mac
To install Titanium Studio on the Mac, download Titanium Studio from Appcelerator and 
install it. Then install Xcode and the Android SDK. The following sections cover this process 
in detail.

Installing Titanium Studio IDE
	 1.	 Register for an account at www.appcelerator.com.

	 2.	 Download Titanium Studio at www.appcelerator.com/titanium/download, as 
shown in Figure 1-1. The download will begin automatically.

Figure 1-1: Downloading Titanium Studio from Appcelerator.

www.it-ebooks.info

http://www.appcelerator.com
http://www.appcelerator.com/titanium/download
http://www.it-ebooks.info/


C H A P T E R  1 â•‡ I N S T A L L I N G  A N D  C O N F I G U R I N G  A P P C E L E R A T O R 5

	 3.	 Open the disk image and drag the Titanium Studio folder into Applications, as shown 
in Figure 1-2.

Figure 1-2: Dragging the Titanium Studio folder into the Applications folder.

	 4.	 Open Applications ➪ Titanium Studio ➪ TitaniumStudio, as shown in Figure 1-3.

Figure 1-3: Launching Titanium Studio.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M6

	 5.	 Check the box to use this folder as the default, and then click OK. See Figure 1-4.

Figure 1-4: Selecting a workspace.

NOTE After completing Step 5, your projects will be saved in Documents/Titanium_Studio_
Workspace by default.

	 6.	 Log in using the account you created earlier. See Figure 1-5.

Figure 1-5: Logging in to use Titanium Studio.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 â•‡ I N S T A L L I N G  A N D  C O N F I G U R I N G  A P P C E L E R A T O R 7

Installing Xcode
Titanium Studio opens the Dashboard by default. You can reach the Dashboard again by 
clicking on the red home icon shown in Figure 1-6.

Figure 1-6: The Titanium Studio Dashboard is always accessible by clicking the red home icon.

	 1.	 Click the Get Started tab.

	 2.	 Scroll down to the Configure Native SDKs section and select iOS SDK. Click the Install 
or Update iOS SDK button on the left. See Figure 1-7.

Figure 1-7: Selecting iOS SDK from the Configure Native SDKs section.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M8

	 3.	 On the next window, click the Configure button. See Figure 1-8. This will launch the 
Mac App Store and take you to the Xcode download page, as shown in Figure 1-9.

Figure 1-8: Platform Configuration window (iOS).

Figure 1-9: Installing Xcode from the Mac App store.

	 4.	 When it’s finished, there should be a green checkmark next to iOS SDK, as shown in 
Figure 1-10.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 â•‡ I N S T A L L I N G  A N D  C O N F I G U R I N G  A P P C E L E R A T O R 9

Figure 1-10: Configuring of the Native SDK section is complete.

	 5.	 Launch Xcode and accept the license agreement.

Installing the iOS Simulator
You will use the iOS Simulator regularly, so it’s important to install it next. Open Xcode and 
navigate to Xcode ➪ Preferences ➪ Downloads. Select each available version of the iOS 
Simulator, as shown in Figure 1-11. Click the Check and Install Now button.

Figure 1-11: Downloading the iOS Simulator in the Xcode Preferences section.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M10

Installing the Titanium Command-Line  
Interface to Use an Alternate IDE
If you choose not to use the Titanium Studio IDE, you will need to set up Titanium on the 
command line. To do so, open Terminal and run the following two commands.

NOTE Node comes with Titanium Studio, so npm should work. 

sudo npm install -g alloy

and

sudo npm install -g titanium

Installing the Android SDK
In the Titanium Studio Dashboard, select Android SDK and click Install or Update Android 
SDK. Then expand the Settings drop-down and select the Android API levels you want to 
support. Then click Configure. Note the Android SDK location: /Users/<username>/
Library/android-sdk-macosx/. See Figure 1-12.

Figure 1-12: Installing Android SDKs in the platform configuration.

TIP Library is a hidden folder, but you can reach it using Finder ➪ Go and then holding down the 
Option key to reveal its location.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 â•‡ I N S T A L L I N G  A N D  C O N F I G U R I N G  A P P C E L E R A T O R 11

Installing Titanium Studio on Windows
To install Titanium Studio on Windows, download Titanium Studio from Appcelerator. Then 
install the Android SDK (Xcode requires a Mac, so you will not be able to deploy to iOS using 
Windows). The following sections cover this process in detail.

Installing Titanium Studio
Register for an account at www.appcelerator.com and then download Titanium Studio 
at www.appcelerator.com/titanium/download. See Figure 1-13.

Figure 1-13: Downloading Titanium Studio from Appcelerator.

	 1.	 Launch the downloaded executable and accept all the defaults in the install wizard. 
Titanium will install the Java Development Environment, Git, and Node. See 
Figure 1-14.

www.it-ebooks.info

http://www.appcelerator.com
http://www.appcelerator.com/titanium/download
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M12

Figure 1-14: Titanium Studio Setup wizard.

	 2.	 After installation, launch Titanium by choosing Start ➪ All Programs ➪ Appcelerator ➪ 
Titanium Studio. Check the box to accept the default folder location and click OK. See 
Figure 1-15.

NOTE After completing Step 2, your projects will be saved in your Documents\Titanium_Studio_
Workspace\ folder by default.

Figure 1-15: Selecting a workspace location.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 â•‡ I N S T A L L I N G  A N D  C O N F I G U R I N G  A P P C E L E R A T O R 13

	 3.	 Log in using the account you created earlier. See Figure 1-16.

Figure 1-16: Logging in to use Titanium Studio.

Installing Android SDK
Dashboard opens by default and you can come back to it later by clicking on the red 
home icon.

	 1.	 Scroll to the bottom of Dashboard to the Configure Native SDKs section.

	 2.	 Click Android SDK.

	 3.	 Click the Install or Update Android SDK button, as shown in Figure 1-17.

Figure 1-17: The Configure Native SDKs section.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M14

	 4.	 Expand Settings and check the boxes for each Android API level you want to support.

	 5.	 Click the Configure button. See Figure 1-18.

Figure 1-18: Installing Android SDKs in the platforms you want to support.

Note the Android SDK default location of C:\android-sdk-win. You may need to reopen 
Titanium Studio to refresh the Android SDK status. Look for the green checkmark.

Summary
To set up your environment, download and install Titanium Studio. On the Get Started tab 
in the Dashboard, you can configure native SDKs. The native SDKs enable you to deploy your 
app to platforms such as Android and iOS. The Android SDK link allows you to download and 
install different Android SDK versions. And on Mac, the iOS SDK link opens the Xcode 
download page on the Mac App Store. Use the Dashboard to verify whether each SDK was 
installed properly. When you’re all set up properly, you’re ready to move on to Chapter 2, 
where you learn about all that Appcelerator Cloud Services has to offer.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 2
Introducing A ppcelerator 
C loud Ser vices

ONE OF THE bigger challenges in building a complex mobile application comes from an 
unexpected source, building the supporting backend systems for the application. The major-
ity of applications out there interact with web services or databases to save or retrieve infor-
mation for presentation in a mobile application. As a mobile developer, you need to find a 
solution since your goal is to develop mobile solutions, not build and maintain backend ser-
vices and perform IT management and support.

The traditional approach is to build this backend system, find a place to host it, and then 
provide the appropriate resources to support it. Taking that approach in the mobile solutions 
world is cost-prohibitive, is an ongoing maintenance challenge, and is a financial burden on 
the mobile solution even before the application is launched.

Appcelerator Cloud Services provides a complete framework for integrating the backend ser-
vices into your mobile application. These services are hosted and maintained by Appcelerator, 
the APIs are tested and supported by Appcelerator, and handling of the appropriate scaling 
as needed is also their responsibility. These Appcelerator-provided services enable you to 
create rich immersive mobile applications. You can extend the application’s services with the 
Node.ACS product and most importantly leverage the infrastructure for the backend pro-
vided by Appcelerator.

Key features of the Appcelerator Cloud Services are available out of the box. For example, 
comments, ratings, and reviews are supported through the API with no additional coding on 
the mobile developer’s side. Common location services such as check-ins and geo-querying 
are provided for all objects in the system. Photos and images are supported with built-in 

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M16

resizing, and blob storage comes ready to use. If the predefined objects do not meet your 
needs, you can save custom objects structured like JSON documents directly into the data 
store. Figure 2-1 shows all Appcelerator Cloud Services’ pre-built objects.

Figure 2-1: All of the Appcelerator Cloud Services’ pre-built objects.

An overview of Appcelerator Cloud Services can be found on the Appcelerator website at 
http://www.appcelerator.com/cloud/.

www.it-ebooks.info

http://www.appcelerator.com/cloud/
http://www.it-ebooks.info/


C H A P T E R  2 â•‡ I N T R O D U C I N G  A P P C E L E R A T O R  C L O U D  S E R V I C E S 17

It is also important to know that even though you are using Appcelerator Cloud Services to 
integrate the Appcelerator Titanium mobile application, the framework provides a REST-
based API, an iOS, and an Android native SDK that can be used for creating native 
applications.

Using the Appcelerator Cloud Services Console
To become more comfortable with Appcelerator Cloud Service, you are going to take a look at 
the Developer Console before you do any coding. You need to create an account at https://
my.appcelerator.com/auth/signup. Figure 2-2 shows the sign-up page.

Figure 2-2: The Appcelerator developer’s sign-up page.

www.it-ebooks.info

https://my.appcelerator.com/auth/signup
https://my.appcelerator.com/auth/signup
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M18

Follow these steps to create an account:

	 1.	 Enter your information and click the Sign Up button. You should be forwarded to the 
developer’s landing page. On the landing page is assorted information available to 
developers.

	 2.	 Click the link entitled Create an ACS App from the section called “Getting Started with 
ACS” on the developer’s resources/landing page. Figure  2-3 shows this developer’s 
landing page.

Figure 2-3: The Appcelerator developer’s landing page.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  2 â•‡ I N T R O D U C I N G  A P P C E L E R A T O R  C L O U D  S E R V I C E S 19

	 3.	 On the Register A New App page, shown in Figure  2-4, enter a name and a brief 
description for your application. After the information is entered, click the Register 
App button.

Figure 2-4: The Register A New App page.

		  If you created an app called wileyone, as the example here does, the resulting screen 
should look like Figure 2-5.

		  The left column provides basic overview information about your application and the 
right column shows the complete list of the predefined objects. You are going to create 
a user object first. Because most activities you will perform with Appcelerator Cloud 
Services require a user login, it’s best to get that out of the way first.

	 4.	 Click on the link titled Users(0) at the bottom of the app page. The (0) represents 
the number of existing objects of that type.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M20

Figure 2-5: The Appcelerator Cloud Services app page.

		  Figure  2-6 shows the screen displaying the results of the query for all user objects. 
Since you have not created any yet, the screen is empty. On the top left, notice the All 
Users and Admin Users tabs. Don’t worry about admin users, as they are covered later, 
when you create user accounts for testing the application.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  2 â•‡ I N T R O D U C I N G  A P P C E L E R A T O R  C L O U D  S E R V I C E S 21

Figure 2-6: The Appcelerator Cloud Services new user page.

	 5.	 Next, click the Create a User button. Figure 2-7 shows the user input page you’ll see 
next.

		  Take a look at the input fields. You can see all the work and thought that went into 
defining the commonly used fields for users of the potential mobile application. If you 
need fields that are not included, you can extend the object using the custom_fields 
property, which is covered in more detail later, when you are extending objects in 
Appcelerator Cloud Services.

	 6.	 You can enter some basic data for the user in order to see how quickly the console gets 
going. Just enter an email address, username, and password. Figure 2-8 shows this 
page with some sample data.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M22

Figure 2-7: Creating a new user.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  2 â•‡ I N T R O D U C I N G  A P P C E L E R A T O R  C L O U D  S E R V I C E S 23

Figure 2-8: The New User Input page with sample data entered.

	 7.	 When you are done entering the data, click the Submit button to save the content to 
Appcelerator Cloud Services. Figure  2-9 shows the All Users tab after creating the 
new user.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M24

Figure 2-9: The All Users tab displaying the newly created user.

	 8.	 You can view the user’s information by clicking the “expand icon,” which looks like a 
plus sign, on the right side of the row of content. This will expand to show the fields 
associated with the user you just created. Figure 2-10 shows the expanded page.

The console supports additional features such as deleting objects, exporting objects, and set-
ting filters on the object display page. These features are just a few of the many features pro-
vided by the console. It is a great place to verify information when your application is not 
doing what you expect or to pre-populate some content to get the development process 
started.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  2 â•‡ I N T R O D U C I N G  A P P C E L E R A T O R  C L O U D  S E R V I C E S 25

Figure 2-10: The All Users tab expanded to show the newly created user’s field.

Using Appcelerator Cloud Services REST API
The Appcelerator Cloud Service has a REST API that allows you to create applications utiliz-
ing the framework as long as you have network capabilities. This means that Appcelerator 
Titanium apps and HTML5 applications utilizing AJAX clients both work.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M26

Note the following from the Appcelerator Cloud Services documentation:

	 ACS is open to all app publishers, regardless of the development technology used to build the app-
Titanium, Objective-C, Java, or HTML5 via frameworks like Sencha Touch or PhoneGap. 
Appcelerator Cloud Services provide a complete REST API along with iOS, Android, JavaScript, 
and ActionScript SDKs. Any device that can make HTTP requests over the Internet can securely 
use ACS as its server backend.

Because the purpose of the book is to demonstrate how to integrate Appcelerator Cloud 
Services with Appcelerator Titanium Alloy through a mobile application, it contains only a 
brief overview of the REST API. Additional information is available in the developer’s section 
of the Appcelerator website.

Installing curl on a Device
Although you can use the Appcelerator Cloud Services console in most cases, you might some-
times need quick access to content or want to quickly verify an API call. You can use the Mac 
OS terminal and the built-in curl command to access your Appcelerator Cloud Services con-
tent. On Windows machines, you can download the curl utility from http://curl.haxx.
se/download.html. To access the content, you need the application key that was created in 
the previous section. The application key parameter is required on all REST API calls.

Simple Test with the REST API
Two important points to note when using the REST API and the console:

■	 You must always be logged in to access Appcelerator Cloud Services.

■	 You must save the session_id from the logged-in user to make Appcelerator Cloud 
Services REST API calls.

If you log in to the Appcelerator developer site and take a look at the documentation for the 
REST API, you can see examples of how to use the API. You can also see the appropriate 
parameters for making the REST API call. The information regarding the URL format and the 
parameters are specified in the documentation. Figure 2-11 shows an example API reference 
documentation.

www.it-ebooks.info

http://curl.haxx.se/download.html
http://curl.haxx.se/download.html
http://www.it-ebooks.info/


C H A P T E R  2 â•‡ I N T R O D U C I N G  A P P C E L E R A T O R  C L O U D  S E R V I C E S 27

Figure 2-11: Sample of the Appcelerator Cloud Services API reference documentation.

You should now log in as the user you created in the previous section. The cookies.txt file 
will save the session information for use in other API calls. Type the information into the 
terminal, replacing the key parameter with your app ID.

$ curl -b cookies.txt -c cookies.txt -F
 "login=wileyonetest@clearlyinnovative.com" -F
 "password=wileyonetest"
  https://api.cloud.appcelerator.com/v1/users/login.json?key
  =[your-app-id]

The response should look something like the following code snippet, which indicates that 
you have successfully logged in to Appcelerator Cloud Services and the session information 
has been saved in the cookies.txt file. Please also note that all Appcelerator Cloud 
Services responses are in the JSON format. The meta section that follows always includes 
information about the specific query as well as a response section that lists the informa-
tion on the objects that are returned from a successful request.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M28

{
  "meta": {
    "code": 200,
    "status": "ok",
    "method_name": "loginUser",
    "session_id": "Pn5a6z19prBWTiu2tI_MONtg7-M"
  },
  "response": {
    "users": [
      {
        "id": "51045756436d6921aa0a17e9",
        "created_at": "2013-01-26T22:23:18+0000",
        "updated_at": "2013-01-27T21:47:21+0000",
        "external_accounts": [

        ],
        "confirmed_at": "2013-01-26T22:23:18+0000",
        "username": "wileyonetest@clearlyinnovative.com",
        "email": "wileyonetest@clearlyinnovative.com",
        "admin": "false",
        "stats": {
          "photos": {
            "total_count": 0
          },
          "storage": {
            "used": 0
          }
        }
      }
    ]
  }

Now you’ll use the Appcelerator Cloud Services REST API to update the user object you cre-
ated. If you recall, the user object has a first_name and a last_name field, which you did 
not set when the object was created. You can set those object properties on the command 
line using curl:

$ curl --verbose -b cookies.txt -c cookies.txt -X PUT --data-
urlencode "first_name=Aaron" --data-urlencode "last_name=Saunders"  
"https://api.cloud.appcelerator.com/v1/users/

           update.json? key=[your-app-id]"

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  2 â•‡ I N T R O D U C I N G  A P P C E L E R A T O R  C L O U D  S E R V I C E S 29

You can get the value for your-app-id from the Appcelerator Cloud Services console on 
the Appcelerator website. After you log in to my.appcelerator.com/apps, select the 
appropriate application, and click Manage ACS. The new window will display a field titled 
“App Key,” which is the value to use for your-app-id.

The result shows the updated user object:

{
  "meta": {
    "code": 200,
    "status": "ok",
    "method_name": "updateUser",
    "session_id": "Pn5a6z19prBWTiu2tI_MONtg7-M"
  },
  "response": {
    "users": [
      {
        "id": "51045756436d6921aa0a17e9",
        "first_name": "Aaron",
        "last_name": "Saunders",
        "created_at": "2013-01-26T22:23:18+0000",
        "updated_at": "2013-01-27T21:59:00+0000",
        "external_accounts": [

        ],
        "confirmed_at": "2013-01-26T22:23:18+0000",
        "username": "wileyonetest@clearlyinnovative.com",
        "email": "wileyonetest@clearlyinnovative.com",
        "admin": "false",
        "stats": {
          "photos": {
            "total_count": 0
          },
          "storage": {
            "used": 0
          }
        }
      }
    ]
  }

www.it-ebooks.info

http://my.appcelerator.com/apps
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M30

The same REST API used from the command line can be integrated into your Appcelerator 
Titanium mobile application, and in most cases the integration is done for you. For those 
who are interested, this section presents the same function performed previously using the 
REST API incorporated in a Titanium mobile application.

To connect to the service, you use the Appcelerator Titanium framework’s http client class, 
as well as the same appkey and API URL that you used on the command line.

NOTE This sample contains some advanced topics. Information about the Ti.Network.
HTTPClient can be found in the Appcelerator Titanium documentation at http://docs.
appcelerator.com/titanium/latest/#!/api/Titanium.Network.HTTPClient.

var url = "https://api.cloud.appcelerator.com
           /v1/users/login.json?key=[your-app-id]";
var client = Ti.Network.createHTTPClient({
    //  called when the response data is available
    onload : function(e) {
        var results = JSON.parse(client.responseText);
        
        // display results on console
        Ti.API.info(JSON.stringify(results,null,2));
    },
    //  called when an error occurs, including a timeout
    onerror : function(e) {
        var results = JSON.parse(client.responseText);
        
        // display error results on the console
        Ti.API.err(JSON.stringify(results,null,2));
    },
});
// Prepare the connection
client.open("POST", url);

// Send the request with parameters
client.send({
    login :"wileyonetest@clearlyinnovative.com",
    password : "wileyonetest"
});

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Network.HTTPClient
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Network.HTTPClient
http://www.it-ebooks.info/


C H A P T E R  2 â•‡ I N T R O D U C I N G  A P P C E L E R A T O R  C L O U D  S E R V I C E S 31

When you run this code, you will see the same results as when the REST API call was exe-
cuted from the command line using curl. The function’s parameters are provided as a 
parameter to the httpClient’s send method.

The previous section described how to use Appcelerator Cloud Services from the console, 
from the terminal using curl and using the HTTP client to make requests. The next section 
demonstrates the preferred integration method, which is to use the Cloud Services library 
and application properties provided by Appcelerator.

Integrating Appcelerator Cloud Services
Appcelerator Cloud Services are tightly integrated with the Appcelerator Framework. 
Integrating the functionality is as simple as setting an option when creating an application. 
This section shows you how to include Appcelerator Cloud Services in your application using 
the Appcelerator Titanium Studio project creation wizards.

Launch Appcelerator Titanium Studio and choose File ➪ New ➪ Titanium Project, as shown 
in Figure 2-12.

Figure 2-12: Creating a new Titanium project.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M32

Enter the information for the project you are creating. This example names the project 
wileyTwoSample and the app.id com.ci.wileytwosample, as shown in Figure 2-13.

Note two important points here:

■	 The app ID must be unique; this is a requirement from iOS and Android SDKs.

■	 The app ID is usually structured in the reverse domain name format.

Figure 2-13: The new project with its completed fields.

Note the Cloud Settings section at the bottom of Figure 2-13. This is checked by default on all 
projects created in Titanium Studio. It cloud-enables your application by including the ti.
cloud.js module in your application and setting the default authentication keys in the 
tiapp.xml file. These authentication properties are read by the ti.cloud.js module so as 
to provide access to your Appcelerator Cloud Service content. (When you cloud-enable your 

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  2 â•‡ I N T R O D U C I N G  A P P C E L E R A T O R  C L O U D  S E R V I C E S 33

application it means that the connection to Appcelerator Cloud Services has been configured 
for you and the application has been set up in the Appcelerator Cloud Services console for you.)

After the project is created, you will be presented with the application configuration screen, 
which is a clean UI representing the XML inside of tiapp.xml. You can see the inclusion of 
the ti.cloud module and the Cloud Services API keys. Figure 2-14 shows the tiapp.xml 
user interface screen.

Figure 2-14: The tiapp.xml user interface screen.

If you view the raw XML in the tiapp.xml file, you can see the Appcelerator Cloud Services 
keys that were added to the application:

<property name="acs-oauth-secret-production"  
type="string">jm9LjW6cNiDOJLD5pCJW8RWgluxM5FYB</property>

    <property name="acs-oauth-key-production"  
type="string">80H9F4B0Dm7i04FEjmV1CNbjrGzUcLeQ</property>

    <property name="acs-api-key-production"  
type="string">HzglgNio7nxobLpXOi9tLmUg1MSF2hN2</property>

    <property name="acs-oauth-secret-development"  
type="string">nRAB8IJR5zWSgPq73HYLnYGTTFWCdXEf</property>

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M34

    <property name="acs-oauth-key-development"  
type="string">exjDF3XgNFvhHSV4rGLhkHqkdq1yDVc3</property>

    <property name="acs-api-key-development"  
type="string">iwW4xJN7OB96gRqAnpIh2zYvMMOa24jS</property>

At the bottom of the file you can see the inclusion of the ti.cloud JavaScript module:

<modules>
    <module platform="commonjs">ti.cloud</module>
</modules>

The ti.cloud JavaScript module supports most of the features of the Appcelerator Cloud 
Services API; please note that in some cases features will be available in the REST API before 
they are included in an updated ti.cloud.js JavaScript module.

NOTE From the Appcelerator documentation regarding Appcelerator Cloud Services support in the 
JavaScript module: Note that when new APIs are added to ACS, they may not be immediately 
available in the Titanium.Cloud module. The version listed after some APIs indicates the 
Titanium Mobile SDK release that included support for that API. (Note that the Titanium.
Cloud module version is not always the same as the SDK version that it ships with.)

The Titanium.Cloud module also includes a sample application demonstrating each of the 
ACS request types. You can find this in the modules folder under the Titanium SDK folder. 
For example:

/Library/Application Support/Titanium/modules/commonjs/
ti.cloud/<version>/example

Simple Example of Integrating  
Appcelerator Cloud Services
To help you get comfortable with Appcelerator Cloud Service, this section starts with a 
simple example that modifies the project you created previously. It doesn’t go into too much 
detail about the Alloy application structure, because the purpose here is simply to demon-
strate the Appcelerator Cloud Service integration.

Alloy applications have models, views, and controllers. In this application you are going to add 
some code to create a user object. Business logic will be included in the controllers, so you 
need to modify the default index.js controller with the Appcelerator Cloud Services code.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  2 â•‡ I N T R O D U C I N G  A P P C E L E R A T O R  C L O U D  S E R V I C E S 35

TIPModel-view-controller (MVC) is a software pattern for implementing user interfaces. It’s 
described in more detail in Chapter 3.

Open the project you created previously and select the index.js file. Figure 2-15 shows 
Titanium Studio with Alloy, opened to the index.js file.

Figure 2-15: Titanium Studio with Alloy, opened to the index.js file.

The first step is to include the Appcelerator Cloud Services module in the application, as so:

var Cloud = require('ti.cloud');

Next you need to add some code to create a new user in Appcelerator Cloud Services. This 
will be the first user associated with this application since you are using the new Appcelerator 
Cloud Services application content created when you created the project.

Go to the Appcelerator Developer Center on the website to find the Appcelerator documenta-
tion. Because Appcelerator Cloud Services are integrated into the platform, you can access 
the documentation with the rest of the Appcelerator Titanium API calls at http://docs.
appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M36

Figure 2-16 shows the Appcelerator developer documentation on Cloud Services.

Figure 2-16: Appcelerator developer documentation on Cloud Services.

Notice the complete list of Cloud Services objects listed in the left panel. Select the Users 
object for information about creating a new user with the Appcelerator Cloud Services API.

Click on the Users object and copy the sample code for creating a user. Paste the code into 
your index.js file and then save the file.

The index.js file is the first controller file executed in the Titanium Alloy application. By 
inserting the code here, you have a test harness so you can quickly demonstrate the interac-
tion of the mobile application with the Appcelerator Cloud Services. Note that this is not the 

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  2 â•‡ I N T R O D U C I N G  A P P C E L E R A T O R  C L O U D  S E R V I C E S 37

recommended approach for implementing Cloud Service integration since it does not follow 
the MVC pattern.

Cloud.Users.create({
    email: 'test@mycompany.com',
    username: 'test@mycompany.com',
    first_name: 'test_firstname',
    last_name: 'test_lastname',
    password: 'test_password',
    password_confirmation: 'test_password'
}, function (e) {
    if (e.success) {
        var user = e.users[0];
        alert('Success:\\n' +
            'id: ' + user.id + '\\n' +
            'first name: ' + user.first_name + '\\n' +
            'last name: ' + user.last_name);
    } else {
        alert('Error:\\n' +
            ((e.error && e.message) || JSON.stringify(e)));
    }
});

The Cloud.Users.create method takes a dictionary of parameters and a callback for 
when the function has completed. This example doesn’t set all of the function’s parameters. 
If you are interested in the complete set of parameters, you can review all of the optional and 
required parameters in the Appcelerator Cloud Services documentation at http://cloud.
appcelerator.com/docs.

NOTEThe function parameter information is not included in the Appcelerator Titanium Framework 
documentation; you must view the information at the Appcelerator Cloud Services 
documentation link (see http://cloud.appcelerator.com/docs).

The parameters for the Cloud.Users.create method are shown in bold:

Cloud.Users.create({
    email: 'test@mycompany.com',
    first_name: 'test_firstname',
    last_name: 'test_lastname',
    password: 'test_password',
    password_confirmation: 'test_password'

www.it-ebooks.info

http://cloud.appcelerator.com/docs
http://cloud.appcelerator.com/docs
http://cloud.appcelerator.com/docs
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M38

}, function (e) {
    if (e.success) {
        // success
    } else {
        // error
    }
});

And the callback is shown in bold here:

Cloud.Users.create({
    email: 'test@mycompany.com',
    first_name: 'test_firstname',
    last_name: 'test_lastname',
    password: 'test_password',
    password_confirmation: 'test_password'
}, function (e) {
    if (e.success) {
        // success
    } else {
        // error!!
    }
});

In the previous example, you used an anonymous function as the callback and specified the 
parameters inline as a JavaScript object. You could have created a separate function and 
structured the code like this:

/**
 * callback function for Cloud.Users.create
 * @param {Object} e
 */
function createCallbackFunction(e) {
    if (e.success) {
        // success
    } else {
        // error
    }
}

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  2 â•‡ I N T R O D U C I N G  A P P C E L E R A T O R  C L O U D  S E R V I C E S 39

// Trying to create a user
Cloud.Users.create({
    email : 'test@mycompany.com',
    username : 'test@mycompany.com',
    first_name : 'test_firstname',
    last_name : 'test_lastname',
    password : 'test_password',
    password_confirmation : 'test_password'
}, createCallbackFunction);

When the code is executed, it makes an asynchronous request to the server; the callback 
function is executed when the request completes. The results of the request are returned in a 
response object similar to the following output:

{
  "meta": {
    "code": 200,
    "status": "ok",
    "method_name": "createUser",
    "session_id": "Pn5a6z19prBWTiu2tI_MONtg7-M"
  },
  "response": {
    "users": [
      {
        "id": "51045756436d6921aa0a17e9",
        "email": 'test@mycompany.com',
        "first_name": 'test_firstname',
        "last_name": 'test_lastname',

        "created_at": "2013-01-26T22:23:18+0000",
        "updated_at": "2013-01-27T21:59:00+0000",
        "external_accounts": [

        ],
        "confirmed_at": "2013-01-26T22:23:18+0000",
        "username": 'test@mycompany.com',
        "email": 'test@mycompany.com',
        "admin": "false",
        "stats": {
          "photos": {
            "total_count": 0
          },
          "storage": {
            "used": 0

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M40

          }
        }
      }
    ]
  }

The object is specific to the Cloud Services object that the function is acting upon, which in 
this case is Cloud.Users. There is some commonality in the properties of the response 
object; where they vary is with the array of objects returned. So in the case of the Cloud.
Users, user objects are returned. With Cloud.Places, a place object would be returned.

Now that you have seen the changes made to the application in the index.js file, try to 
launch the application and see what happens. Figure 2-17 shows the process of launching 
the application.

Figure 2-17: Launching the application.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  2 â•‡ I N T R O D U C I N G  A P P C E L E R A T O R  C L O U D  S E R V I C E S 41

Figure 2-18 shows the result of running the application.

Figure 2-18: The result of running the application.

Finally, Figure  2-19 shows the application results in the Appcelerator Cloud Services 
console.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M42

Figure 2-19: The application results in the Appcelerator Cloud Services console.

Summary
In this chapter you successfully created and cloud-enabled the mobile application with a scal-
able infrastructure supported by Appcelerator. You interacted with the cloud services using 
curl, using the Appcelerator Network HttpClient, and finally using the preferred method 
with the Cloud module library.

The next chapter starts to get into more detail of the Appcelerator Titanium Alloy frame-
work; combining the structure of the framework with the full-featured cloud services pro-
vides you with a powerful technology stack for creating mobile solutions.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 3
A ppcelerator  T itanium 
Al loy  O ver view

ALLOY IS A new application framework by Appcelerator Titanium. It provides an MVC— 
Model-View-Controller—framework for developers to build cross-platform mobile applica-
tions. You are not required to use Alloy when building apps with Appcelerator Titanium, but 
after you understand the benefits of the framework, you will want to. Also note that even 
with Alloy, you can still fall back to the more traditional application structure in situations 
when you believe the Alloy approach doesn’t fit.

Alloy provides a clean, well-defined MVC structure for building your applications. This struc-
ture follows the convention over configuration approach, which means if you structure and 
build your app following a specified set of conventions, the framework is self-configuring.

NOTEThe Model-View-Controller (MVC) triad of classes (first described by Krasner and Pope in 1988) 
is used to build user interfaces in Smalltalk-80. Looking at the design patterns inside MVC 
should help you see what the term “pattern” means. MVC consists of three kinds of objects. 
The Model is the application object, the View is its screen presentation, and the Controller 
defines the way the user interface reacts to user input. Before MVC, user interface designs 
tended to lump these objects together. MVC decouples them to increase flexibility and reuse.

From an Appcelerator Titanium perspective, MVC means you now have a well-defined 
structure for your applications based on a proven framework that is utilized in many pro-
gramming languages today.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M44

Understanding the Model-View-Controller (MVC) 
Framework
The model in MVC stores and maintains the data that your application works with. This can 
be local data stored in a SQLite database or a flat file but the same model maintains the data, 
whether it comes from a remote web service, a REST-based API, or a document store like 
MongoDB or Couchbase. The key here is that if the code/function has to do with managing 
or manipulating data—the CRUD—then it most likely belongs in the model.

CRUD refers to the major functions that are implemented in relational database applica-
tions. Each letter stands for a standard SQL statement and HTTP method:

■	 Create or add new entries

■	 Read, retrieve, search, or view existing entries

■	 Update or edit existing entries

■	 Delete/deactivate existing entries

The following code snippet represents the simplest form of a model that you would use in 
your mobile solution.

exports.definition = {
    config : {
        // table schema and adapter information
    },

    extendModel: function(Model) {
        _.extend(Model.prototype, {
            // Extend, override or implement Backbone.Model 
        });

        return Model;
    },

    extendCollection: function(Collection) {
        _.extend(Collection.prototype, {
            // Extend, override or implement Backbone.Collection 
        });

        return Collection;
    }
}

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 45

You’ll learn about more of the advanced aspects of the model when you read about sync 
adapters and data binding later in the chapter.

The view is pretty straight forward, and usually the easiest to understand. It is the presentation 
layer of the application. All things that the user will interact with directly are considered the 
view. The view.xml files are XML-based representations of the user interface built using the 
Appcelerator objects defined in the various Titanium namespaces. The following code shows a 
sample view file of a window containing a label. The label has a click event associated with it. 
When the label is clicked, the function doClick from the associated controller is executed.

Notice the id property on the view elements. It allows you to access the object from inside 
the controller.

You’ll read more about views later in this chapter when you start to integrate all of the pieces 
of the framework together and build a functional application.

The following code snippet represents the simplest form of a view that you could use in your 
mobile solution.

<!-- Create a window object and add a label to it -->
<Alloy>
    <Window id="main_window" class="container">
        <!-- on click event, call controller function doClick -->
        <Label id="hello_label" onClick="doClick">
           Hello, World
        </Label>
    </Window>
</Alloy>

Another important capability of Alloy when creating views is the use of the Require XML 
tag. It allows you to include other views or widgets in a view.

You can expand the previous example by adding a header to the window containing a title. 
Create the new view using the command line or by the menu item:

alloy generate controller header

Then add a simple label with a title inside the header.xml view file.

<Alloy>
  <View class="container">
    <Label>My Sample Title</Label>
  </View>
</Alloy>

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M46

You can set the style on the new header file to make sure the header is at the top of the page 
and the label font is larger and bold. Add the following code in to the header.tss file:

The following code snippet represents an example of a .tss file that would hold the style 
information for a view in your mobile solution. Alloy uses the concept of convention over 
configuration, which in this case means the components are matched by their names—
header.js for controller, header.tss for styles, and header.xml for view.

".container": {
  backgroundColor: "white",
  top : 0,
  height : Ti.UI.SIZE,
  width : Ti.UI.FILL,
  backgroundColor : "brown"
},
"Label": {
  font : {
        fontSize : 18,
        fontWeight : 'bold'
  }
}

Finally, when you put it all together, the updated index.xml view file looks like this:

<!-- Create a window object, add header then add a label to it -->
<Alloy>
    <Window id="main_window" class="container">
        <!-- header for window, using Require -->
        <Require type="view" id="header" src="header" />

        <!-- on click event, call controller function doClick -->
        <Label id="hello_label" onClick="doClick">
           Hello, World
        </Label>
    </Window>
</Alloy>

The controller is the heart of the business logic for your application; it is the glue that holds it 
all together. Going in one direction, the controller gets data from the model for the view to 
render. Going in the other direction, the user interacts with the view, which then triggers the 
controller to take a specific action with the view or to pass CRUD changes on to the model.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 47

In the following sample controller file, you can see the doClick function mentioned previ-
ously. Note how the controller has access to the controls from the view by using the $ variable 
to access context variables like the hello_label and the main_window being used in the 
open statement at the end of the file.

// local/private function
function doClick(e) {
    alert($.hello_label.text);
}

// public exported function than can be accessed by other
// controllers
exports.changeLabelText = function(_text) {
    $.hello_label.setText(_text);
}

// $ Represents current scope of controller, open the window
// main_window that was defined in the view.xml
$.main_window.open();

Most applications will have multiple models, controllers, and views but this structure will 
help in architecting and maintaining your application.

Using Appcelerator Alloy with  
the MVC Framework
Appcelerator Alloy maps the MVC framework directly to its project file structure. As you can 
see in Figure 3-1, there is a folder corresponding directly to the components described in the 
description of MVC.

Alloy also includes an additional file type to further complement the framework, .tss files, 
which contain style information that is applied to views. This further separates the concerns—â•‰
how you apply styles to the view is controlled through .tss files, which are structured very 
similar to cascading style sheet (.css) files you would find in an HTML website. These .tss 
files are then applied to the view at pre-compile time to determine layout color and 
presentation-related properties.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M48

Figure 3-1: Appcelerator Alloy folder project structure.

Using the view file you created previously, add the following code to the file.

<!-- Create a window object and add a label to it -->
<Alloy>
    <Window id="main_window" class="container">
        <!-- on click event, call controller function doClick -->
        <Label id="hello_label" onClick="doClick">
            Hello, World
        </Label>
        <Label id="blue_label" >Blue Label</Label>
    </Window>
</Alloy>

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 49

You could style the index.tss file like this:

// This is applied to any element with the class attribute 
// assigned to "container" 
".container": {
    backgroundColor:"white",
    layout:"vertical",
},
// This is applied to all Labels in the view
"Label": {
    width: Ti.UI.SIZE,
    height: Ti.UI.SIZE,
    color: "#000" /* black */
}, 
// This is only applied to an element with the id attribute
// assigned to "label"
"#blue_label": {
    color: "blue" 
}

In this example, the index.tss file is specific to the index.js controller, but you can 
create global-level styles by using an app.tss file.

Also since Appcelerator supports cross-platform development, you can have platform-specific 
styles using specific selectors in your .tss files:

// This is applied to all Labels in the view
"Label": {
    width: Ti.UI.SIZE,
    height: Ti.UI.SIZE,
    color: "#000" /* black */
}, 
// This is applied to all Labels in the view, when the device
// is an android device
"Label[platform=android]": {
    color: "green"
}, 

The relationship of the .tss files to the .xml view files is similar to the HTML files and 
the .css files in a web application.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M50

Backbone.js
Alloy includes additional JavaScript libraries to assist in structuring the MVC pattern when 
developing applications; one such library is called Backbone.js.

NOTE Backbone.js gives structure to web applications by providing models with key-value binding and 
custom events, providing collections with a rich API of enumerable functions, and providing 
views with declarative event handling. Backbone.js connects it all to your existing API over 
a RESTful JSON interface. See http://blog.iandavis.com/2008/12/09/what-are-
the-benefits-of-mvc/.

Alloy’s implementation focuses specifically on integration of models, collections, and event 
binding. The view and routing implementation of Backbone.js is not leveraged in Alloy.

Backbone.js has a dependency on underscore.js, which provides a set of utility functions 
that are exposed by default on the model and collection objects. They can also be applied to your 
application object. See http://underscorejs.org/ and http://backbonejs.org/.

Backbone.js in Alloy: Models and Collections
Models are a representation of the data in your mobile application. Backbone.js provides the 
basic functions for maintaining the data. The model objects can be extended to provide cus-
tomized functionality to your model. Alloy models inherit the default Backbone.Model 
functionality.

A collection is a set of models of a specific type. The collection is comprised of the models and 
a set of functions to manage the collection/list of models. The collection objects can be 
extended to provide customized functionality to your models. Alloy models inherit the 
default Backbone.Collection functionality.

Models and collections are contained in one model file in Alloy; the basic file starts off 
like this:

exports.definition = {
  config : {
    "columns" : {
      name : 'TEXT',
  },
   

www.it-ebooks.info

http://blog.iandavis.com/2008/12/09/what-are-the-benefits-of-mvc/
http://blog.iandavis.com/2008/12/09/what-are-the-benefits-of-mvc/
http://underscorejs.org/
http://backbonejs.org/
http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 51

  // specify sync adapter information here
    "adapter" : {
      "type" : "sql_new",
      "collection_name" : "stuff",
      "idAttribute" : "stuff_id" // if not using id as the id
    }
  },

  extendModel : function(Model) {
    _.extend(Model.prototype, {
        // add code here to extend the model
    });
    // end extend model

    return Model;
  },
  extendCollection : function(Collection) {
    _.extend(Collection.prototype, {
      // add code here to extend the collection
    });
     // end extend collection

    return Collection;
  }
}

As stated, the models represent the data and the supporting methods in your mobile applica-
tion. When your model needs to be read, saved, or modified, Backbone.js has a default persis-
tence strategy that it applies which is based on the default HTTP verbs. This default strategy 
assumes convention over configuration in that the models are wired to function perfectly 
with a REST-based API in response to the HTTP verbs.

The following table outlines how your application’s actions map to HTTP verbs and how that 
is then represented in Backbone.js sync adapters:

Action HTTP Verb Backbone Sync Method

Insert new book POST create

Get a specific book GET read

Get all books GET read

Update a book PUT update

Delete a book DELETE delete

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M52

These simple code snippets reflect the previous table’s actions:

// create a new model, passing the name of model
var model = Alloy.createModel("stuff");
model.set({"name":"Aaron", "age":22});
model.save(); // POST: create

// get a model by model id
var model = new Stuff();
model.fetch(10); // GET: read

// get a collection of models
var collection = Alloy.createCollection("stuff");
collection.fetch(); // GET: read

// update a model
var model = new Stuff();
model.fetch(10); // GET: read 
model.set({"age":45});
model.save(); // PUT: update

// delete a model by model id
var model = new Stuff();
model.destroy(10); // DELETE: delete

The model file defined here will support all of the actions described in the table without any 
additional changes. Sometimes you need your model or collection to support additional 
functionality, which is where extending the model object comes in.

Assume you have a model object that stores dates. You know that dates are usually stored in 
some format that is not easy for end users to read. You could extend the model to encapsu-
late rendering and produce prettyDate. This involves converting the timestamp into a for-
matted date string.

extendModel : function(Model) {
    _.extend(Model.prototype, {

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 53

    // @return a pretty version of the date using 
    // moment.js date utilities 
    // @see http://momentjs.com/
    //
    prettyDate : function() {
        var _model = this; 
        var date_update = model.get("date_update");
        return moment.unix(date_update).calendar();
    }
});
    // end extend model

You can then just call the function on the model:

// create a new model
var model = Alloy.createModel("stuff");

// query a model with the id 10
stuffModel.fetch("10");

// now show normal date
stuffModel.get("date_update");

// show pretty date
stuffModel.prettyDate();

Collections can be extended in the same manner; see the following example where you’re 
looking for items in the collection that match.

Models and collections can both be created as global singleton instances; they can be created 
by using the instance method available on both objects.

// create a new global model of type "stuff"
var globalStuffModel = Alloy.Model.instance("stuff");
// create a new global collection of type "stuff"
var globalStuffCollection = Alloy.Collection.instance("stuff");

Now to retrieve the object you can call the same method and it will return the object or create 
a new instance of one.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M54

Using Sync Adapters
Sync adapters are commonJS libraries that you can include in your Alloy application to con-
trol how your models interact with the persistence mechanism of your application. In the 
default Backbone.js, there is an assumption that there is a library providing AJAX communi-
cation with the server—usually jQuery.

Alloy doesn’t currently provide a default sync adapter to replace the default AJAX interaction 
provided by jQuery; you must specify a specific sync adapter to provide that functionality.

Alloy provides a few ready-made sync adapters. In the adapter object, set the type to use 
one of the following:

■	 sql for the SQLite database on the Android and iOS platforms.

■	 localStorage for HTML5 local storage on the Mobile web platform.

■	 properties for storing data locally in the Titanium SDK context.

■	 sync for mimicking the default Backbone.js AJAX functionality. This behavior sup-
ports REST-based APIs.

Basic Sync Adapter Construction
Because the sync adapter must follow the interface provided by Backbone.js, you can follow the 
previous table for understanding the methods you must support. Backbone.Sync was 
designed to support web/AJAX interaction, which is based on the HTTP verbs listed in the table.

// Alloy Sync Adapter Snippet to show key function sync, 
// which handles the mapping of Backbone.Sync calls to
// specific REST actions or API calls
module.exports.sync = function (method, model, options) {

switch (method) {

        // GET: Model.fetch and Collection.fetch methods to 
        // retrieve data.
        case 'read':
            break;

        // POST: Model.save and Collection.create methods to
        // an initialize model if the IDs are not set.
        case 'create':
            break;

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 55

        // DELETE: Model.destroy method to delete the model
        // from storage.
        case 'delete':
            break;

        // PUT: Model.save and Collection.create methods to
        // update a model if they have IDs set.
        case 'update':
            break;
        default :
            error = 'ERROR: Sync method not recognized!';
    }

    if (error) {
        options.error(model, error, options);
        model.trigger('error');
    } else {
        options.success(model, error, options);
        model.trigger('sync');
    }
};

Backbone Model Events
Backbone models trigger events based on certain actions. These actions can be subscribed to 
so that developers can take specific actions in the application. The default behavior for 
models is to fire a sync event when the sync adapter is called. If the call is not successful, the 
model should fire an error event.

// Listening for a sync event from model named 
// currentCollection
$.currentCollection.on('sync', function() {
     Ti.API.info("the model is being modified");
});

When writing your own adapters, be sure to respect the convention of triggering the proper 
events. Follow the conventions of the standard Backbone.js adapter and return the new 
model, the network client object, and the original options that were passed into the sync 
adapter function.

// Inside of a custom sync adapter when starting
// sync adapter call
model.trigger('request', model, xhr, options);

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M56

// Inside of a custom sync adapter on successful
// sync adapter call
model.trigger('sync', model, resp, options);

// Inside of a custom sync adapter on error
// sync adapter call
model.trigger('error', model, resp, options);

Model-View Data Binding
A simple explanation of model-view data binding is the capability of changes in models and 
collections to be automatically reflected in the presentation layer of the application, or the 
views. Appcelerator Alloy currently only supports TableViews and the base View object; 
additional Appcelerator View objects will be supported in future Alloy releases.

Demo Project for Model View Binding
You can use the Titanium Studio menus to create the new demo project. Follow these steps 
to do so:

	 1.	 Choose File ➪ New ➪ Titanium Project, as shown in Figure 3-2.

Figure 3-2: Creating a new Titanium project from the menu command area.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 57

	 2.	 Select Default Alloy Project, as shown in Figure 3-3.

Figure 3-3: Select the Default Alloy Project option.

	 3.	 Figure 3-4 shows the New Titanium Project window, where you define the new proj-
ect’s name and settings. For the project name, enter demo_project. For the app ID, 
enter com.ci.demoproject. Finally, enter an URL for the Company/Personal URL.

Creating the Model File
First you need to create a model file. You will use the properties sync adapter to store the 
information since you don’t want the complexity of creating a database and defining rows 
and columns in this introductory example.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M58

Figure 3-4: Enter the project information in this window.

The model you are creating will have two properties, called make and model. Since you are 
using the properties sync adapter, there are no predefined columns to represent these 
fields. The JSON representation of this model would look something like this:

  {
     "make" : "Honda",
     "model" : "Accord"
  }

You can use the Titanium Studio menu command to create the model JavaScript file, as 
shown in Figure 3-5. Simply choose New ➪ Alloy Model.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 59

Figure 3-5: Creating a new model from the menu options.

You then enter the model name of cars in the field and select localStorage. You will be 
using the properties sync adapter, but it is not available in the menu. You will edit the 
value in the resulting model file, as shown in Figure 3-6.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M60

Figure 3-6: Entering a name for your new model.

Open the file and make the edits shown in the following code. The model file should look 
similar to this in the end:

// models/cars.js 
exports.definition = {
 config: {

    adapter: {
      type: "properties",
      collection_name: "cars"
    }
  },
  extendModel: function(Model) {
    _.extend(Model.prototype, {
      // extended functions and properties go here
    });

    return Model;
  },
  extendCollection: function(Collection) {
    _.extend(Collection.prototype, {
      // extended functions and properties go here
    });

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 61

    return Collection;
  }
}

Since you are going to use index.xml for the view, you need to replace the existing content 
with the code that follows. When you are finished, the contents of the cars.xml view file 
should look similar to this:

<Alloy>
    <Collection src="cars" />
    <Window id="mainWindow" class="container">
        <TableView dataCollection="cars" dataTransform="transform" 
            dataFilter="filter">
            <TableViewRow title="{title}" modelId="{id}" />
        </TableView>
    </Window>
</Alloy>

First, you declared the collection of cars in the view file:

<Collection src="cars" />

This creates a global instance of a collection object based on the model cars. Since this is a 
global instance, you can access it in the code like this:

Alloy.Collections.cars

Next, you associate the collection to the table using the dataCollection property. You 
then set a few more properties on the collection for filtering and transforming the data that 
appears in the table. In this example, those functions are defined in the controller associated 
with the view but could also be global functions. You’ll read more about this when you read 
about the controller JavaScript file.

<TableView dataCollection="cars" dataTransform="transform" 
            dataFilter="filter">

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M62

Now replace the code in index.js with the following code. First you will see the trans-
form function. This function is called for every model in the collection and allows the con-
tents of the model to be modified for rendering in the TableView. Note that the properties 
returned from the transform function’s model can be actual model properties or proper-
ties derived from the properties in the model.

In the following example, you concatenate the model and the make properties to create the 
title that you’ll display in the table:

// Convert the model and make into a title property
function transform(model) {
    // Need to convert the model to a JSON object
    var carObject = model.toJSON();
    return {
        "title" : carObject.model + " by " + carObject.make,
        "id" : model.cid
    };
}

In the following example, you concatenate the model and the make to create the title that 
you’ll display in the table:

// Show only cars made by Honda
function filter(collection) {
    return collection.where({
        make : 'Honda'
    });
}

This close event listener is required to ensure the bindings from the TableView are 
cleaned up correctly and there are no memory leaks.

// Free model-view data binding resources when this 
// view-controller closes
$.mainWindow.addEventListener('close', function() {
    $.destroy();
});

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 63

Next, add an event listener on the window so that when the window is completely open, 
you’ll set the contents of the collection. The TableView is bound to the collection so when 
it detects that the contents of the collection have changed, it will automatically refresh itself.

// add the data to the collection AFTER the window is opened. The
// generated data binding code is listening for specific events
// to force a redraw... reset is one of them.
$.mainWindow.addEventListener("open", function() {
    Alloy.Collections.cars.reset([{
        "make" : "Honda",
        "model" : "Civic"
    }, {
        "make" : "Honda",
        "model" : "Accord"
    }, {
        "make" : "Ford",
        "model" : "Escape"
    }, {
        "make" : "Ford",
        "model" : "Mustang"
    }, {
        "make" : "Nissan",
        "model" : "Altima"
    }]);
});

Finally you open the window.

$.mainWindow.open();

When you run the application, you should see the output shown in Figures 3-7 and 3-8.

When Alloy generates the code based on the view configuration, it sets the TableView so it 
can respond to changes in the collection. As mentioned, all the application needs to do is 
trigger one of these events against the collection and the table will refresh itself.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M64

Figure 3-7: Application running in iOS.

Creating the Collection Object
A few points regarding creation of the collection object.

Even though you can create the collection object in the controller, as so:

Alloy.Collections.instance("cars");

In most cases it will not work if you attempt to create the collection in the same controller 
that is associated with the view you are attempting to render. The issue here has to do with 
the way Alloy generates code. All of the view code from the view.xml file is executed before 
any controller code. When this view code is executed, Alloy performs the event binding dis-
cussed previously. It will fail since the collection objects have not been created yet.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 65

Figure 3-8: Application running in Android.

A solution I have used—when you must create the collection in the application code and not 
the view file—is to create the collection in a parent controller and then load a different child 
view to render the collection. So if you use the current example, the index.js file would 
create the collection and then create a new collection-view pair to actually render the table.

The index.xml file contents will need to be copied to the new child view. You need to create 
a new view-controller pair, naming the new set of files cars to render the information. You’ll 
use index.js as an overall application initialization starting point:

<!-- index.xml -->
<Alloy>
    <!—Nothing needed here    -->
</Alloy>

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M66

The index.js file now just sets up collection by creating a global instance. This function will 
create the collection based on the model name provided or return the global instance of the 
collection if one exists.

// controllers/index.js
// Defining the Collection in the controller and not the view
Alloy.Collections.instance("cars");

You now create the new view-controller pair named cars. It will render the information and 
provide the supporting functions for interacting with the model and the view.

You can use the menu commands and interface to create the new controller, as shown in 
Figures 3-9 and 3-10.

Figure 3-9: Creating a new controller.

A controller is created by using the Alloy.createController function and passing the 
name of the desired controller.

// controller/index.js
// create a new controller for view-controller pair
// that will eventually render the table
var carsController = Alloy.createController("cars");

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 67

Figure 3-10: Name your new controller.

Then you initialize the collection with the sample data. Notice you use the reset method on 
the collection to trigger the controller to redraw the content.

// controllers/index.js
// add the data to collection after the
// view-controller pair is created
Alloy.Collections.cars.reset([{
    "make" : "Honda",
    "model" : "Civic"
}, {
    "make" : "Honda",
    "model" : "Accord"
}, {
    "make" : "Ford",
    "model" : "Escape"
},{
    "make" : "Nissan",
    "model" : "Altima"
}]);

Open the main window in the cars controller to show the content.

// open the view to show table
carsController.mainWindow.open();

Show the cars view; notice the collection is not defined in cars.xml as it was in the previ-
ous example.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M68

<Alloy>
  <!-- notice there is no collection defined here -->
  <Window id="mainWindow" class="container">
    <TableView dataCollection="cars" dataTransform="transform"
          dataFilter="filter">
        <TableViewRow title="{title}" modelId="{id}"/ 
    </TableView>
  </Window>
</Alloy>

In the cars.js file, you have moved over the transform and filter functions from the 
index.js file. You need to do this because the TableView processing is being done in the 
cars.js controller and not in the index.js controller any longer.

// controllers/cars.js
function transform(model) {
    // Need to convert the model to a JSON object
    var carObject = model.toJSON();
    return {
        "title" : carObject.model + " by " + carObject.make,
        "id" : model.cid
    };
}

// Show only cars made by Honda
function filter(collection) {
    return collection.where({
        make : 'Honda'
    });
}

// Free model-view data binding resources when view-controller 
// closes
$.mainWindow.addEventListener('close', function() {
    $.destroy();
});

You can run the application at this point and see the original list of cars displayed when the 
application is first launched, as is shown in Figures 3-7 and 3-8.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 69

Data Binding with Models in Appcelerator 
Titanium Alloy
This chapter has covered data binding with model collections, so now it’s time to take a 
moment to see how data binding works with models in Appcelerator Titanium Alloy.

This section builds on the example created previously to show a detail screen of a specific car 
based on the user selecting a car in the TableView.

Updating the cars.js Controller File
First you make some changes to the existing application’s cars.js controller file to listen 
for click events on the TableView and take action when the user clicks on a row in the view.

As you can see in the following code, you are creating the new controller instance with the 
Alloy.createController function and passing in the name of the controller to create.

$.table.addEventListener('click', function(_event) {
    var detailController = Alloy.createController('detail');
});

The Alloy.createController function allows for passing in arguments in a JavaScript 
hash; you pass in the model object of the item you want to render in the detail screen. In this 
case you want to show the car object that the user clicked on in the TableView.

You will find the car model object by the object’s ID. Backbone.js allows for querying the col-
lection for specific objects based on the ID. In this case, the properties sync adapter does 
not assign specific IDs so you can access the model object by using the _getByCid function 
from the Backbone collections.

Now put it all together and open the new car detail.js controller:

$.table.addEventListener('click', function(_event) {

    // get the correct model
    var model =
        Alloy.Collections.cars._getByCid(_event.rowData.modelId);

    // create the controller and pass in the model
    var detailController = Alloy.createController('detail', {
        data : model
    });

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M70

    // get view returns the root view when no view ID is provided
    detailController.getView().open({
        modal : true
    });
});

Creating the New Controller/View for the Detail Display
You need to create the new controller and view files for the detail display. You follow the 
same process as before of clicking on the project menu and selecting File ➪ New Controller, 
but enter the name detail instead.

The model data binding in the detail.xml view file looks very similar to how the data 
binding was implemented for the collection in the cars.xml file. You specify a model object 
for the view to work with, but you add the instance property to indicate that this is not a 
global variable, but one that is local to the collection associated with this view.

<Model src="cars" instance="true" id="car"> 

Next you associate the model of the window object; notice the use of the $ variable when 
specifying the object. This is to indicate once again that the object is a local instance variable 
defined in the controller.

<Window id="detailWindow" model="$.car">

Access the model’s properties once again using the $ variable to access the local object.

<Label id="make_lbl" text="{$.car.make}" ></Label>
<Label id="model_lbl" text="{$.car.model}" ></Label>

Putting it all together, notice the addition of the Button object, which has been added to the 
window. In the detail.js controller, you listen for the click event on the button to trig-
ger the closing of this window.

<!-- detail.xml -->
<Alloy>
    <Model src="cars" instance="true" id="car"> 
    <Window id="detailWindow" model="$.car" >
        <Label id="make_lbl" text="{$.car.make}" ></Label>

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 71

        <Label id="model_lbl" text="{$.car.model}" ></Label>
        <Button id="closeBtn">Close Window</Button>
    </Window>
</Alloy>

Here’s the associated .tss file for the car detail view:

".container": {
    backgroundColor: "white"
},
"#detailWindow" : {
        title:"Car Detail Window",
        layout:'vertical',
        backgroundColor: 'white'
},
"Label" : {
        top:10,
        textAlign:'center',
        font: {
            fontWeight:'bold',
            fontSize:18
        },
        color: '#000',
        height:Ti.UI.SIZE
},
"#closeBtn" : {
    top : "20dp"
}

Completing the Controller for the Detail View
The controller for handling events and showing the detail view has a few interesting changes.

As noted , you can pass parameters into the controller when creating it; the following pattern 
is one way to get the first argument if provided or set it to an empty object:

var args = arguments[0] || {};

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M72

The last new pattern specific to data binding and models relates to how you set the data on 
the model you want to display in the view. Recall that you extracted the arguments from the 
controller and assigned them to the local variable called args. You now set the local car 
model object using the data in args.data.

$.car.set(args.data.attributes);

This can also be done using the Model.toJSON() function, as follows:

$.car.set(args.data.toJSON());

You use set since data binding is listening for specific events to trigger the redrawing of the 
view; set will trigger that event.

The final code for the detail.js controller file is shown here:

var args = arguments[0] || {};
// close the window when button is clicked
$.closeBtn.addEventListener('click', function() {
    $.detailWindow.close();
});

// instance variable used in data binding.
// we do this set here to trigger the events
// that will cause the data to be rendered
$.car.set(args.data.attributes);

// Free model-view data binding resources when this 
// view-controller closes
$.detailWindow.addEventListener('close', function() {
    $.destroy();
});

You can run the application at this point and see the original list of cars displayed when the 
application is first launched, as is shown in Figures 3-7 and 3-8.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 73

When you click on one of the cars listed in the view, you will be taken to the detail view. It 
shows the information of the specific car you selected, as shown in Figures 3-11 and 3-12.

Figure 3-11: The detail view when you click on Honda Accord from the main iOS list.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M74

Figure 3-12: The detail view when you click on Honda Accord in main Android list.

Creating Widgets
Widgets are small MVC-based components that exist inside your application. The objective of 
a widget is to promote reusability across multiple projects. There are also multiple compo-
nents provided by Appcelerator and third-party providers that can assist in quickly con-
structing basic functionality in your application.

Widgets are made up of the same components as full-blown applications, views, controllers, 
and styles. They can be used to encapsulate repeated functionality in your application or on 
multiple projects. This chapter uses a simple toggle button widget to explain how a widget is 
structured.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 75

You need to create a new test project for the widgets section of this chapter. Follow the 
instructions for creating a new project as described in the beginning of the chapter and then 
create a widget. You can also create the widget using the command line from the terminal, 
like so:

alloy generate widget buttonToggle

Or you can create one from the Titanium Studio File menu. Be sure to name your widget, as 
shown in Figure 3-13.

Figure 3-13: Naming the widget.

When the widget is created, Titanium will add the base files to your projects inside the direc-
tory titled widgets, as shown in Figure 3-14.

Figure 3-14: Widgets directory structure.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M76

As you can see, the file structure in the widgets directory matches the overall structure of 
the project with the views and controllers directories.

This example creates a simple button that toggles between on and off. There are many ways 
to create such a button, but this approach was used to demonstrate the capabilities of 
widgets.

First you need a widget.xml file that contains the view that will be rendered when the 
widget is added to a view or window in the project. Add the following code to the widget.
xml file:

<Alloy>
  <View id="container" >
    <Button id="on">Button is On</Button>
    <Button id="off">Button is Off</Button>
  </View>
</Alloy>

You have created a view with the ID container to hold the buttons you’re going to toggle. 
This code also created two buttons and specified an ID for each one. One button is on and the 
other is off. Finally, text was added to the buttons. Since there is no specific layout informa-
tion provided, the buttons will be drawn on top of each other, which is what you want.

Next up is the .tss file, which will contain style information for the view. Add the following 
code to the file:

"#container": {
    height: Ti.UI.SIZE,
    width: Ti.UI.SIZE
}

What you are doing here is wrapping the buttons in a view container. You set the width and 
height to Ti.UI.Size to make sure that the view is only as big as the items you have placed 
inside.

The controller will draw the widget on the screen and handle the user interaction with the 
buttons. Modify the widget.js file by including the following code:

// event handler for when the user clicks button
$.container.addEventListener('click', function(_event) {

  // hide the clicked item, show the unclicked one

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 77

  toggleButtonByIdClicked(_event.source.id);
})
// _buttonId name of the id clicked
function toggleButtonByIdClicked(_buttonId) {
  if (_buttonId === "on") {
    $.on.hide();
    $.off.show();
  } else if (_buttonId === "off") {
    $.on.show();
    $.off.hide();
  }
}

The container or button wrapper is accessed through $.container. You need to listen for 
any clicks inside the container. When you set the listener at this level, you’ll get an event 
when the buttons are clicked.

Each of the buttons is assigned an ID in the widget.xml file. When the buttons are clicked, 
the ID is passed in the event.source object.

The rest of the code is pretty straightforward. You toggle the visibility of the objects using 
hide or show, depending on which item received the click event.

You can now add the widget to the view. You can do this either through the parent project or 
by using the view file, as follows:

<Alloy>
  <Window id="mainWindow" class="container">
    <Require type="widget" src="buttonToggle" id="buttonWidget"/>
  </Window>
</Alloy>

This means the controller that was using the widget has no change.

// open the window
$.mainWindow.open();

Or, you can programmatically add the widget to the view from inside the controller, as 
follows:

// create the widget
var toggleBtnWidget = Alloy.createWidget("buttonToggle");

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M78

// get the main view from the widget
$.mainWindow.add(toggleBtnWidget.getView());

// open the window
$.mainWindow.open();

The final step in using the buttonToggle widget is adding information about the widget to 
the config.json file, which can be found in the project’s app directory.

{
    "global": {},
    "env:development": {},
    "env:test": {},
    "env:production": {},
    "os:ios": {},
    "os:android": {},
    "dependencies": {
        "buttonToggle": "1.0"
    }
}

Creating a More Complex Widget
Sometimes you need to initialize the widget before it is displayed in the view. Remember the 
idea behind widgets is that they can be reusable components across multiple projects. So it is 
very likely that you might need to configure or set up the widget differently based on the 
context of the project it is used in.

Since you can pass parameters into the widget, you can configure the widget at startup. Start 
with the buttonToggle widget you created and enhance it by processing arguments. Follow 
the same pattern used when processing controller parameters:

var args = arguments[0] || {};

// pass in default setting or set to 'on'
args.defaultState = args.defaultState || 'on';

You use the toggleButtonByIDClicked function at startup to simulate clicking on the 
button and to set the proper button as visible.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  3 â•‡ A P P C E L E R A T O R  T I T A N I U M  A L L O Y  O V E R V I E W 79

// set the initial state of the button
if (args.defaultState === "on") {
  toggleButtonByIdClicked("off");
} else if (args.defaultState === "off") {
  toggleButtonByIdClicked("on");
}

Here’s the completed widget.js file:

var args = arguments[0] || {};
args.defaultState = args.defaultState || 'on';

// set the initial state of the button
if (args.defaultState === "on") {
  toggleButtonByIdClicked("off");
} else if (args.defaultState === "off") {
  toggleButtonByIdClicked("on");
}

// event handler for when the user clicks button
$.container.addEventListener('click', function(_event) {

  // hide the clicked item, show the unclicked one
  toggleButtonByIdClicked(_event.source.id);
})

/**
* _buttonId name of the id clicked
*/
function toggleButtonByIdClicked(_buttonId) {
  if (_buttonId === "on") {
    $.on.hide();
    $.off.show();
  } else if (_buttonId === "off") {
    $.on.show();
    $.off.hide();
  }
}

You now can modify the widget declaration to set the default button parameter. You have the 
view.xml markup file for passing in the parameter.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M80

<Alloy>
  <Window id="mainWindow" class="container">
    <Require type="widget" src="buttonToggle" id="buttonWidget" 
           defaultState="off"/>
  </Window>
</Alloy>

And you have the programmatic approach when instantiating the widget from the 
controller:

// create the widget
var toggleBtnWidget = Alloy.createWidget("buttonToggle", null, {
  "defaultState": "on",
  "id" : "toggleBtnWidget"
});

// get the main view from the widget
$.mainWindow.add(toggleBtnWidget.getView());

// open the window
$.mainWindow.open();

Summary
This chapter covered the three key components of the Model-View-Controller pattern. You 
saw real examples of how they are implemented in Appcelerator Titanium Alloy. You also 
worked with the Widget framework, which can be used to develop reusable components that 
are completely self-contained. Chapter 4 moves on to creating a cross-platform photo-sharing 
application.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 4
Bui lding a  Cross -P latfor m Socia l 
Photo- S har ing A ppl icat ion

BECAUSE THE FOCUS of the book is on mobile development and not mobile design, this 
chapter uses a simple design to illustrate the concepts it’s going to teach. Of course, mobile 
design is critical to the success of your app in the market. Mobile applications don’t have 
user’s manuals; if users can’t make sense of the app after a few clicks, they will probably 
never use it again.

When building designs for clients, we usually try to create wireframes or simple mockups of 
the application screens. This process provides a baseline for what we believe we are trying to 
build and the images stimulate questions in a way that sometimes words on a page cannot.

Using Balsamiq to Design Mockups
I like to use simple tools for laying out the information since this is really more of a requirements/
features/functions phase and not a user interface design phase. A simple tool I have used 
with success (and the one that’s used for the images in this chapter) is Balsamiq.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M82

The website sums up to two keys reasons I like Balsamiq:

■	 Mockups reproduce the experience of sketching on a whiteboard, but this allows them 
to be distributed, reviewed, and updated.

■	 These wireframes remove the distraction of the user interface design and put the focus 
on the features and the functions. The design team can then use these wireframes in a 
later phase of the project.

Let’s walk through the sample mockup screens. To start with, Figure 4-1 shows a typical User 
Login screen.

Figure 4-1: A typical User Login screen.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  4 â•‡ B U I L D I N G  A  P H O T O - S H A R I N G  A P P L I C A T I O N 83

The point of the User Login screen is three-fold:

■	 Allows the users to log in to the system.

■	 Allows the users to create an account with an email and password.

■	 Allows the users to create an account with their Facebook credentials.

Figure 4-2 shows the screen that allows the users to create an account using their Facebook 
credentials. It allows the users to enter or edit account information, including a first name, 
last name, and a profile photo.

Figure 4-2: A standard Account Creation screen.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M84

Figure 4-3 shows the Main Application screen, showing the Feed tab.

Figure 4-3: Main application screen with tabs.

The Main Application screen’s job is the following:

■	 Allows users to toggle between the three tabbed sections of the application—Feed, 
Friends, and Settings.

■	 Allows the users to take a new photo by clicking the photo button.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  4 â•‡ B U I L D I N G  A  P H O T O - S H A R I N G  A P P L I C A T I O N 85

The Feed tab of the Main Application screen is the default screen. It has the following 
characteristics:

■	 It’s a scrolling view of the images associated with the user and any people the current 
user has identified as friends.

■	 Each photo has a title, tags, and captions associated with it.

■	 The photo container contains an action area that allows users to view or add comments 
and to share the image.

■	 Has an action area where there is a button for adding and viewing comments and for 
sharing the current image on Facebook.

Figure 4-4 shows the Photo Comments screen.

Figure 4-4: List view of a Photo Comments screen.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M86

The purpose of the Photo Comments screen is as follows:

■	 Shows a list of comments associated to the current photo.

■	 The comment element contains the photo of the user who entered the comment, the 
time and location of the comment, and the comment text.

■	 Photo comments can be deleted by the user who entered the comment by swiping the 
comment row.

■	 New comments can be created by clicking the New Comment button, which is shown 
in the upper-right corner of the image.

■	 Users click the back button to return to the Main Application screen.

Figure 4-5 shows the New Photo Comment screen.

Figure 4-5: The New Photo Comment screen.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  4 â•‡ B U I L D I N G  A  P H O T O - S H A R I N G  A P P L I C A T I O N 87

The New Photo Comment screen has the following capabilities:

■	 Users can enter the text of the new comment for the specified photo.

■	 Users can share the comment and the photo on Facebook from this screen.

■	 The user’s location is captured with the comment entry.

■	 Users can cancel the creation of the comment and return to the Photo Comments screen.

Figure 4-6 shows the Friends/All Users list screen.

Figure 4-6: A list view of friends and all users.

Note the following functions of this screen:

■	 Includes a toggle button at the top to filter the list to display the user’s current list of 
friends or to allow users to search for friends.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M88

■	 The user list contains a search filter to narrow down the list of users when adding 
friends.

■	 The friend display row contains the profile photo, the username, and the first and last 
names.

■	 When the user is viewing the Friends list, they can remove selected elements from it.

■	 When the user is viewing the list of all users, they can add the selected elements to the 
Friends list.

Figure 4-7 shows the Settings screen, which has the following characteristics:

■	 Shows the username, the first and last names, and the profile photo.

■	 All elements can be changed except the username.

Figure 4-7: The Settings screen.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  4 â•‡ B U I L D I N G  A  P H O T O - S H A R I N G  A P P L I C A T I O N 89

■	 Shows a Facebook on/off switch, which toggles Facebook functionality.

■	 Shows a notification on/off switch, which toggles notification alerts from the 
application.

Figure 4-8 shows the Photo Capture screen, which is a native camera interface for taking 
photos or using photos from the image gallery. It enables users to associate photos with their 
accounts.

Figure 4-8: Platform-specific photo capture screen.

Walking Through the Phone-Sharing App
This section walks through the process of building a mobile application for sharing photos 
through Facebook. The application will also allow you to comment on photos and choose 

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M90

other member’s photos to include in your feed. Basically, this is a very simple version of all of 
the photo-sharing applications that exist today.

Along with showing you how to build this application, this section exposes you to the power-
ful benefits of Appcelerator Cloud Services and the Appcelerator framework. You don’t need 
a Ruby or PHP developer for the backend services since they are provided for you; you don’t 
need a hosting provider or a database administrator or a database designer; and most impor-
tantly, you don’t need to be experienced in Objective-C or Java. This is where the huge ben-
efits and efficiencies of the Appcelerator platform start to shine.

The following sections walk through the features and map them to the specific technologies.

User Accounts
This feature leverages the core functionality of the Appcelerator Cloud Services User objects. 
It also allows the users to create accounts utilizing an existing account in Facebook. 
Appcelerator Cloud Services allows you to integrate/create accounts using a Facebook ID.

The User Settings screen provides some basic information about the users, allows the users 
to log out of the application, and allows them to configure the Facebook integration.

Camera
Appcelerator Framework native device integration provides access to the Camera and the 
photo gallery. Users have complete access to the flash, as well as the front-facing and rear-
facing cameras, which will provide users with the perfect shot to share on their mobile 
applications.

Photo Uploading
The Appcelerator Cloud Services Photo object provides the ability to upload photos and 
resize them into various dimensions for full-screen viewing, viewing as a thumbnail preview, 
and for sending to a friend at the original size. You need all of those different sizes so that the 
app efficiently utilizes the mobile device’s bandwidth and user interface experience. It’s 
important to avoid creating poor experiences by attempting to render large images 
unnecessarily.

You’ll also get photo storage in the cloud that can scale to your needs. Don’t underestimate 
the value of cloud storage when dealing with images; this is a powerful feature that simplifies 
the process.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  4 â•‡ B U I L D I N G  A  P H O T O - S H A R I N G  A P P L I C A T I O N 91

The app will also determine the location of the user when the photo was taken so you can 
show the images on the map. This enables use of Appcelerator Cloud Services to perform 
geo-queries in order to find images based on distance from a certain location. A title, tags, 
and a simple caption are also saved with each photo; all of those pieces of data can be queried 
on, just like the location.

Social Integration with Facebook 
As mentioned previously, the powerful integration of the Facebook API Appcelerator allows 
you to create accounts based on existing Facebook credentials. However, the integration does 
not stop there. You can use the API to share the photos from the application. Even if you 
choose not to associate your user account with Facebook, you can still connect to Facebook 
to share the images with your friends.

When uploading the images, the app will leverage not only the Appcelerator Facebook inte-
gration, but also the image-processing feature of Appcelerator Cloud Services. This way, the 
larger image is uploaded to Facebook automatically. Therefore, when users view the image on 
a PC or want to print a photo, they will have the better quality original.

Finding Friends
What good is a social mobile application if you cannot find friends to share your photos with 
or if it is too difficult to follow your friends’ photo updates? Not very good. Appcelerator 
Cloud Services has the ability to find friends, create friends lists, and block access to content 
based on the list of friends.

The app will give users the ability to find friends and create a feed of just their friends’ photos 
for a more personalized experience. If a user’s friend’s photos get too racy or annoying, they 
can use the Friends List feature to remove them from their feed.

Commenting and Rating of Media
Appcelerator Cloud Services provides a way to allow users to comment and rate objects. You 
can associate the object with other comments, posts, and photos, which is what you’ll do in 
the example application in this book. Users will be able to comment on photos, like photos, 
and see how others commented on photos in the application. They’ll also be able to query the 
comments based on the users or on the photo. Users can also delete their comments if they 
decide to make a change.

Just as with photos, the app will associate a location with the commenter so users can 
see how far their images have been shared across the globe, based on the location of the 
comments.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M92

Push Notifications
Appcelerator Cloud Services provides objects for sending push notifications to users. You can 
send these notifications to specific users, user groups, or to “channels” that can be created for 
users to subscribe to. In this example application, users receive notification when they get a 
new friend, when a friend posts a photo to the system, or when they receive a comment 
about one of their photos. This is one way to keep users engaged and returning to the 
application.

Application Flow
Figure 4-9 shows the high-level flow of how the application fits together.

Figure 4-9: How the application flows at a high level.

Summary
Now that you have a basic understanding of the user interface and have seen sample dia-
grams of the layout, you have a foundation for what you will build throughout the rest of the 
book. The diagrams are representative of what you will build, but since you will be building a 
cross-platform solution, there will be some differences in the user interface elements on iOS 
and Android. Chapter 5 explains the development process you’ll go through when building 
cross-platform apps.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 5
Development Process  for  
Cross -P latfor m A pps

IN CHAPTER 4 you walked through the application’s entire user interface and reviewed the 
wireframes/mockups for it. You reviewed the high-level features of the overall application. 
The next step is to write some code!

Because the most important piece of functionality for the cross-platform social photo-
sharing application that you’re building in this book is integration with the camera, this 
chapter jumps right into the camera functionality so you can see some immediate value in 
the product you’re building.

When adding new functionality into Alloy applications, the usual pattern is to introduce new 
files for all of the components of the Model-View-Controller framework you read about in 
Chapter 3.

Creating the Project for This Chapter
To create the project you’ll use in this chapter, you need to open Titanium Studio and create 
a new project. If you are unfamiliar with this approach, review Chapter 2, where new project 
creation is covered.

Select File ➪ New ➪ Titanium Project, as shown in Figure 5-1.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M94

Figure 5-1: Creating a new Alloy project in Titanium Studio.

Figure 5-2 shows the window where you need to enter a project name and application ID. Be 
sure to check the Automatically Cloud-Enable this Application option. Then click Next.

Figure 5-2: Setting project-specific properties when creating a new project.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 95

Be sure to use the Alloy Project Template provided. When selecting the project template, 
choose Two-Tabbed Alloy Application (shown in Figure 5-3) and then click Next.

Figure 5-3: Select the Two-Tabbed Alloy Application template.

When you’re done entering information, click the Finish button. After the project is created 
and the application is registered with ACS, you will be presented with the project configura-
tion screen shown in Figure 5-4.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M96

Figure 5-4: Enter the information in the required fields to set up your project.

Preconfiguring Appcelerator Cloud Services
In this application, you’ll be integrating Appcelerator Cloud Services as the datastore for the 
information required by the application. To integrate with ACS, you need to have a user 
account with authorized credentials. Because you’ll be working with the user account in later 
chapters, you’ll create an Administrative User Account for now directly in ACS. This account 
is used throughout the application until the user accounts are introduced in a later chapter.

Enter the following URL into your browser: https://my.appcelerator.com/apps. 
Then find your application by the project name you specified and click on Manage ACS. If you 
are asked to log in again, you’ll need to enter your credentials and continue. Figure 5-5 shows 
a list of all of the applications you have created, those with Cloud Services enabled and those 
without.

www.it-ebooks.info

https://my.appcelerator.com/apps
http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 97

Figure 5-5: The Appcelerator Cloud Services console list shows your ACS-enabled apps.

Now you’re going to create an admin user that will have access to all objects in the 
application.

First switch to the development instance of ACS by clicking the Development button in the 
ACS console. See Figure 5-6.

Figure 5-6: Select the proper button to switch between development and production services.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M98

Scroll to bottom of the screen and click the User link, then click the tab Admin Users, then 
the button Create an Admin User, as shown in Figure 5-7.

Figure 5-7: Click the Create an Admin User button.

Now you need to enter the required information for creating the admin user (see Figure 5-8). 
For this example, enter wileytigram_admin for the username and wileytigram_admin 
for the password to keep things simple. When you’re finished, click Submit to create the 
admin user.

Figure 5-8: Enter the minimum information to create the administrative user.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 99

After the admin user is created, the console should be updated to look like Figure 5-9.

Figure 5-9: Updated view of the console after the administrative user has been created.

Now that you have set up the user account, you can exit the ACS console and get back to the 
application that needs to be created.

Creating the User Interface
The Alloy template you used when constructing the project created the basis for the applica-
tion you’re going to build, but you need to make some changes to the files for better applica-
tion structure.

First you’ll create the controllers and views for the three tabs specified in the wireframes that 
you created in the previous chapter. You can do this by using the menu item in Titanium 
Studio for creating Alloy objects.

Creating the Tab Group Files
Right-click on the project icon in the Project Explorer and select New ➪ Alloy Controller, as 
shown in Figure 5-10. You need to do this once for each of the tabs you’re creating (Feed, 
Friends, and Settings). Figure 5-11 shows the window where you enter the new Alloy con-
troller’s name.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M100

Figure 5-10: Creating a controller in Titanium Studio.

Figure 5-11: Entering the name of the controller.

After you create an Alloy controller for all three of the tabs, you should have a project direc-
tory that looks similar to Figure 5-12.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 101

Figure 5-12: View of the Project folder in Titanium Studio.

Modifying index.xml and index.js for a Better Application Structure
The initial index.xml file created by the project template assumes that all of the windows 
are created in the index controller. Because you know your application will become more 
complex than that, you’re going to use the individual controllers created previously to sepa-
rate and better organize the application. To do this, you’ll use the Alloy require capability 
in the index.xml view file.

In the original index.xml, shown here, you created the tabs and windows associated with 
the tabs directly in the one controller and view set.

<Alloy>
    <TabGroup>
        <Tab title="Tab 1" icon="KS_nav_ui.png">
            <Window title="Tab 1">
                <Label>I am Window 1</Label>
            </Window>
        </Tab>

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M102

        <Tab title="Tab 2" icon="KS_nav_views.png">
            <Window title="Tab 2">
               <Label>I am Window 2</Label>
            </Window>
         </Tab>
    </TabGroup>
</Alloy>

This could very quickly become overly complex and difficult to maintain. Let’s make some 
changes. Here’s the updated index.xml, which provides for a better-structured 
application:

<!-- index.xml -->
<Alloy>
   <TabGroup>
      <!-- Tabs included via <Require> tag -->
      <Require id="feedController" src="feed"/>
      <Require id="friendsController" src="friends"/>
      <Require id="settingsController" src="settings"/>
   </TabGroup>
</Alloy>

Notice use of require for separation of functionality into the individual controllers. You 
specify the name of the resource file containing the controllers; notice you don’t include the 
.js extension on the filename when using require. Also notice how you specify the ID for 
each of the controllers created in index.xml. This will provide access to the controller asso-
ciated with the required file.

One last change before you move on. You need to clean up the index.js controller file 
for now to just call $.index.open(). That call will initiate the action of creating the 
tabGroup and all of the associated views and controllers you will see in the next section.

Reviewing the Basic Window and Tab File Structure
Now take a look at what is in each of the three views. The window and the tab creation are 
now in the specific view files. Each of the files looks similar to the following listing. The only 
difference is that the name for the file, window, and tab correspond to the specific functions 
mentioned—feed, friends, or settings.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 103

<!-- feed.xml -->
<Alloy>
   <Tab title="Feed">
      <Window title="Feed">
          <Label>This is a Feed tab</Label>
      </Window>
   </Tab>
</Alloy>

Setting the Default Styles for the Window and Tab Through the  
app.tss File
The tab and window title are both defined. Note that the code also removes the tab icon; 
you’ll replace it later with a more appropriate icon. The code sets a label string in the window 
so that there is a visible indicator when you switch tabs.

The final change moves all of the style settings from index.tss to app.tss so the defaults 
can be utilized by all views in the application. To do this, you need to create a new file called 
app.tss and then copy the contents of index.tss to the newly created file:

"Window": {
   backgroundColor: "#fff"
},
"Label": {
   width: Ti.UI.SIZE,
   height: Ti.UI.SIZE,
   color: "#000",
   font: {
      fontSize: "18sp",
   },
   textAlign: 'center'
}

There are some default settings for application-wide resources that you can define once here 
in the application. This will help with minimizing some potential cross-platform issues when 
building your app. They are shown here and should be added to the app.tss file:

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M104

'Label[platform=android]': {
    color: '#000' // Android default to black 
},
'Window[platform=android]': {
    modal: false // android windows all heavyweight
},
'TextField': {
    borderStyle: Ti.UI.INPUT_BORDERSTYLE_ROUNDED, // default style
    borderColor : 'black'
},
'TextField[platform=android]': {
    borderRadius: 6, // common default style
    borderColor : 'black',
    borderWidth : 1
},
'ImageView[platform=ios]': {
    preventDefaultImage: true // never image while loading remote
}

You can see the use of the platform attributes, [platform=ios], on the styles; it is a very 
powerful feature that you will use often as an alternative to platform-specific folders.

Once you’ve copied the file contents, rebuild the application to view the new three-tabbed 
application. Figure 5-13 shows the result.

Enabling the Camera Functionality on the Feed Tab
To demonstrate the functionality early, you’re going to see what happens when you integrate 
the camera API now. The application should take a photo every time the user clicks the 
camera button on the Feed page. You want the application to take the image from the camera 
along with some miscellaneous information and display it in the feed. This Feed view will be 
displayed in a table view (using the TableView control) inside the window you’ve already 
created.

You will incrementally build out the functionality of the application through the chapters 
and then apply more professional styling in the end. The book’s focus is on demonstrating 
value from the application early and often.

Updating the Feed View
Open the feed.xml file and add the code to display the camera button. You need to provide 
an ID for the button so you can access it from the feed controller file. You also need to add 
the TableView control to the window.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 105

Figure 5-13: Basic application with the three tabs.

This approach will work for the IOS application since the navigation buttons are a standard 
pattern. Later in the chapter you will add Android support by introducing the ActionBar into 
the application. Notice in the view code that follows how the RightNavButton element is 
only used in the iOS application.

Notice in the following code how all of the objects have IDs. It’s a good idea to get into the 
habit of adding IDs to objects when you add them to the view. These IDs will be required 
when you access the objects in the controller and also when you want to apply styles in the 
.tss files.

<Alloy>
   <Tab id="feedTab" title="Feed">
      <Window id="feedWindow" title="Feed">
         <RightNavButton platform="ios">
            <Button id="cameraButton">Camera</Button>

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M106

         </RightNavButton>
         <TableView id="feedTable"></TableView>
      </Window>
   </Tab>
</Alloy>

Adding Code to Listen for a Click on the Camera Button
It’s time to start adding some controller code to respond to events in the views. You will start 
with the camera button that you added to feed.xml. Open controllers/feed.js to 
add the following code, which will listen for the click on the button you created. Remember 
to use the $ variable to access objects in the view.xml file; it makes it easy to access the 
cameraButton object to associate events or to change the object’s properties.

OS_IOS && $.cameraButton.addEventListener("click",function(_event){
    $.cameraButtonClicked(_event);
});

// handlers
$.cameraButtonClicked = function(_event) {
  alert("user clicked camera button");
}

Adding a Custom Table Row to TableView
Every table needs rows, and since you’re going to create a complex row, it is best to separate 
functionality into a separate view and controller. You use the same process when creating the 
controllers for tabs to create the controller and view for the rows. Name the rows feedRow.

Take a minute to look at the wireframe you’re using for the design so you can see how the 
design maps to the XML structure used in the feedRow.xml file. Figure 5-14 shows the 
three tabs and Figure 5-15 shows the wireframe mockup.

Adding the FeedRow View
Here is the code for feedRow.xml view file:

<Alloy>
   <TableViewRow class="row">
      <View class="container">
         <Label id="titleLabel"></Label>

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 107

         <View id="imageContainer">
            <ImageView id="image"></ImageView>
         </View>
         <View id="buttonContainer">
           <Button id="commentButton">Comment</Button>
           <Button id="shareButton">Share</Button>
         </View>
      </View>
   </TableViewRow>
</Alloy>

Figure 5-14: The application with its three (empty) tabs.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M108

Figure 5-15: Wireframe of the FeedRow view.

The view container holds the whole row. The Label with the ID titleLabel will be 
inside of the container as will all of the other objects nested inside the XML element con-
tainer. Next you create another view container with the ID imageContainer. Then you 
create an ImageView control with the ID image that will hold the photos. You place it inside 
of the imageContainer so it will be easier to place and style in the view.

Then you create another view container buttonContainer, this is also used for placement 
of the buttons. It’s a good idea to add these containers for logical placement of objects. 
Finally, you create the two buttons—commentButton and shareButton—that will 
respond to click events and perform the appropriate actions.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 109

NOTEYou might be wondering where the code for the FeedRow controller is. Usually the view and 
the controllers are created in pairs when structuring the application. The FeedRow you created 
will populate the table with objects from data retrieved using Appcelerator Cloud Services. 
Since you have not incorporated Appcelerator Cloud Services yet, the code for the feedRow 
controller is covered later in the chapter.

Integrating the Camera Functionality into 
the Application
Now that you have the interaction between the view and the button and you are capturing 
the click in the controller, you can start to integrate the core Appcelerator functionality.

Accessing the Device Camera in Appcelerator
Looking at the Appcelerator documentation, you find the Titanium.Media object, which 
contains the showCamera function you’ll use to access the camera functionality. The 
documentation at http://docs.appcelerator.com/titanium/latest/#!/guide/ 
Camera_and_Photo_Gallery_APIs provides an excellent overview of the functionality. 
We recommend you reference this Appcelerator documentation for specific details about the 
method and options.

Side-Stepping the Camera for Now
Since the camera works only when testing and you’ve not learned about the camera in full 
at this point, you need a way to get images into the application without using the camera. 
The following code solves the problem by determining whether the application is running in 
the simulator.

If the application is running on the simulator, you use the method Titanium.Media.
openPhotoGallery and allow users to select from the photo gallery. Otherwise, you 
need to call Titanium.Media.showCamera to open the camera so the users can take a 
photo.

var photoSource = Titanium.Media.getIsCameraSupported()?

 Titanium.Media.showCamera : Titanium.Media.openPhotoGallery;

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/guide/Camera_and_Photo_Gallery_APIs
http://docs.appcelerator.com/titanium/latest/#!/guide/Camera_and_Photo_Gallery_APIs
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M110

When the users click the camera button, the application will open the camera object using 
Titanium.Media.showCamera(). The API will display the camera and the default options 
for taking a picture. If the users take a new picture, a media object is returned that contains 
the information needed for displaying the photo in the Feed tab.

You’ll create a function for processing the image for uploading to ACS, but will stub it out for 
now and just return the image with a temporary title, including the timestamp. This is suffi-
cient at this point for getting an image to display in the TableView row.

Adding Camera API Calls to Feed Controller
Take a moment to look at the code added to the feed.js controller to respond to the click 
event and take the picture or load an image from the device’s photo gallery:

$.cameraButtonClicked = function(_event) {
   alert("user clicked camera button");

   var photoSource = Titanium.Media.getIsCameraSupported() ? 
       Titanium.Media.showCamera : Titanium.Media.openPhotoGallery;

photoSource ({
      success : function(event) {
          processImage(event.media, function(_photoResp){
              photoObject = _photoResp;
          });
      },
      cancel : function() {
       // called when user cancels taking a picture
      },
      error : function(error) {
       // display alert on error
          if (error.code == Titanium.Media.NO_CAMERA) {
             alert('Please run this test on device');
          } else {
             alert('Unexpected error: ' + error.code);
          }
       },
       saveToPhotoGallery : false,
       allowEditing : true,
       // only allow for photos, no video
       mediaTypes : [Ti.Media.MEDIA_TYPE_PHOTO]
   });
}

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 111

function processImage(_mediaObject, _callback) {
  // since there is no ACS integration yet, we will fake it
  var photoObject = {
    image : _mediaObject,
    title : "Sample Photo " + new Date()
  }

  // return the object to the caller
  _callback(photoObject);
}

This code retrieves the picture and the event.media object holding the picture that the user has 
taken. Following the wireframes provided, you need to place the image in the table view. You can 
accomplish that by creating the TableViewRow control, adding the items to the row, and then 
inserting the row into the table view. See http://docs.appcelerator.com/titanium/
latest/#!/guide/TableViews for a detailed explanation about how to do this.

You will accomplish the creation of the customized tableRow that matches the wireframes 
by creating a TableViewRow control from the feedRow.js controller, which you created 
earlier in the application.

The file feedRow.js is straightforward assignment of the image object to the ImageView 
control and the text to the titleLabel property.

Revisiting the FeedRow Controller
Recall that earlier in the chapter you created the feedRow.xml view but did not complete 
the feedRow.js controller. Now that you have some data to add to the row you can com-
plete that process.

Note that you can pass variables into the controllers when you create them. In this case, 
you’re passing in the photoObject returned, which is a JavaScript object containing the 
image and its title. The controller can take only one additional parameter, so you pass in this 
object as a JavaScript hash and then retrieve each property and assign it to the appropriate 
object.

In this case, the arguments passed into the controller are the image and title, which is exactly 
what you need to set the properties in the feedRow.xml view.

Add this code to feedRow.js:

var args = arguments[0] || {};

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/guide/TableViews
http://docs.appcelerator.com/titanium/latest/#!/guide/TableViews
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M112

// this is setting the view elements of the row view
// based on the arguments passed into the controller
$.image.image = args.image;
$.titleLabel.text = args.title || '';

Revisiting the Feed Controller to 
Add the Rows to the Table 
Inside of feed.js you update the code to insert the row into feedTable every time a 
photo is taken. You utilize the returned value of the function processImage() to pass to 
the controller feedRow. Once the controller is created, calling the method getView() on 
the controller will return the TableViewRow object, which is then inserted into 
feedTable:

// code snippet from success handler in Titanium.Media.showCamera
success : function(event) {

   processImage(event.media, function(photoResp) {

      // create the row
      var row = Alloy.createController("feedRow", photoResp);

      // add the controller view, which is a row to the table
      if ($.feedTable.getData().length === 0) {
         $.feedTable.setData([]);
         $.feedTable.appendRow(row.getView(), true);
      } else {
           $.feedTable.insertRowBefore(0,row.getView(), true);
        }
    });

},

Adding Some Style to the Feed Table
To get the layout of the rows to look similar to the wireframes, you need to include some styl-
ing in the feedRow.tss file.

If you want the row to leave some room around the edges of the screen for example, you set 
the width of the row container to 90 percent of the screen width, as so:

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 113

".container": {
  layout: "vertical",
  width : '90%'
},

Since this application is being built for iOS and its screen width is 320dp, you have to set the 
size of the imageContainer for the photo to 300dp. Set the size of the actual photo to 
280dp to leave room for a 10dp border. To center the image in the imageContainer, you 
set the top and the left properties of the image to 10dp:

"#imageContainer" : {
  width : '300dp',
  height :'300dp',
},
"#image" : {
  top : '10dp',
  left : '10dp',
  width : '280dp',
  height : '280dp',
},

For the button area, create buttonContainer and set the height to 42dp. This should be a 
sufficient size for the buttons. The width is set to Ti.UI.FILL, which instructs the button 
to use the entire width of the parent container. Set each of the buttons to be 50 percent of 
the width of the buttonContainer and set a default height of 32dp for the buttons.

"#buttonContainer" : {
  layout : 'horizontal',
  width : Ti.UI.FILL,
  height : '42dp'
},
"#commentButton" : {
  width : '50%',
  height : '32dp'
},
"#shareButton" : {
  width : '50%',
  height : '32dp'
}

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M114

Figure 5-16 shows the app with a sample photo shown on the screen.

Figure 5-16: Application running with a sample photo.

Using the Android ActionBar for 
the Camera Button
If you are following along using Android as your development platform, you will have real-
ized that there currently is no way to access the camera or the photo gallery to load images 
into the application. Normally in an Android application this would be accomplished through 
the inclusion of menus and menu items. In this application, you will use Appcelerator’s 
implementation of the ActionBar.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 115

Setting Up the index.xml View to 
Support the ActionBar
For the ActionBar to work properly, you need to set up the Android menus and associate 
them with the activity associated with tabGroup you created. You need to specify a func-
tion, called doOpen, to call when the window is opened to set up the menus in the ActionBar. 
You’ll also set the ID on the tabGroup object so it can be accessed inside the index.js 
controller.

<!-- index.xml -->
<Alloy>
   <TabGroup id="tabGroup" onOpen="doOpen">
      <!-- Tabs included via <Require> tag -->
      <Require id="feedController" src="feed"/>
      <Require id="friendsController" src="friends"/>
      <Require id="settingsController" src="settings"/>
   </TabGroup>
</Alloy>

Modifying the index.xml View to Support the ActionBar
What the following code does is get the activity and add the menus to the activity. The Ti.
Android.SHOW_AS_ACTION_ALWAYS parameter will keep the menu item in the ActionBar 
so it appears as a button. You also need to set the menu item’s click event to call the same 
function to display the camera. You will notice this is the same function that was used in the 
iOS version of the application.

function doOpen() {

   if (OS_ANDROID) {
      var activity = $.getView().activity;
      var menuItem = null;

      activity.onCreateOptionsMenu = function(e) {

      if ($.tabGroup.activeTab.title === "Feed") {

        menuItem = e.menu.add({
          //itemId : "PHOTO",
           title : "Take Photo",
           showAsAction : Ti.Android.SHOW_AS_ACTION_ALWAYS,
           icon : Ti.Android.R.drawable.ic_menu_camera
         });

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M116

         menuItem.addEventListener("click", function(e) {
            $.feedController.cameraButtonClicked();
         });
      }
      };

      activity.invalidateOptionsMenu();

      // this forces the menu to update when the tab changes
      $.tabGroup.addEventListener('blur', function(_event) {
      $.getView().activity.invalidateOptionsMenu();
      });
   }
}

After the doOpen function is added, you remove the $.index.open() call and add $.tab-
Group.open() to the end of the index.js controller.

Adding the Alloy Sync Adapter and 
Appcelerator Cloud Services
The current implementation of the application follows the MVC pattern discussed earlier in 
the book except for the persistence layer and the model. First you will learn how to replace 
the plain JavaScript object with the Alloy model object and then you’ll integrate Appcelerator 
Cloud Services to save the model object to the cloud.

To integrate Appcelerator Cloud Services, you need to create the sync adapter to communi-
cate with the cloud services.

Creating the User Model
To create a new model object, right-click on the project icon and then select New ➪ Alloy 
Model, as shown in Figure 5-17. Enter user as the model name. You’ll create the user model 
first since you need to log in before doing any interactions with ACS.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 117

Figure 5-17: Creating a model in Titanium Studio.

Extending Alloy Models
The user model will be extended multiple times because there are specific functions required 
that do not follow the basic CRUD format that the sync adapter pattern closely follows. 
Extending the model is just a way you add functionality, such as login and logout.

This section focuses only on logging the users in; account creation and setup are discussed 
later in the book. When you learn how to implement those features, you’ll also enhance the 
user model and the ACS sync adapter to support that functionality. Since extending the user 
model handles the login functionality, you won’t be creating the sync adapter quite yet.

Logging the User In
Logging users in to ACS is pretty straightforward; when they provide a username and pass-
word, the app makes the Cloud.Users.login API call.

The models and adapter utilize the ti.cloud.js module, which is provided by Appcelerator. 
The process maps the appropriate REST verbs to the correct methods on the ti.cloud object 
for performing the reads, writes, updates, searches, and queries. This section starts with the 
user object, so it might be wise for you to review the ACS documentation on ti.cloud in 
preparation for additional details. You can find it at http://docs.appcelerator.com/
titanium/latest/#!/api/Titanium.Cloud.Users.

Open the user.js model you just created and extend the model to support the user login 
function. The following code has been added and you can see—if you reference the 

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Users
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Users
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M118

documentation—that the login process is exactly as specified in the documentation. You 
provide a username and password and a function to call when the request is completed.

exports.definition = {

    config : {

        "adapter" : {
            "type" : "acs",
            "collection_name" : "users"
        }
    },

    extendModel : function(Model) {
        _.extend(Model.prototype, {

            /**
             * log user in with username and password
             *
             * @param {Object} _login
             * @param {Object} _password
             * @param {Object} _callback
             */
            login : function(_login, _password, _callback) {
                var self = this;
                this.config.Cloud.Users.login({
                    login : _login,
                    password : _password
                }, function(e) {
                    if (e.success) {
                        var user = e.users[0];

                        // save session id
                        Ti.App.Properties.setString
                          ('sessionId', e.meta.session_id);
                        Ti.App.Properties.setString
                          ('user', JSON.stringify(user));
                        _callback && _callback({
                            success : true,
                            model : new model(user)
                        });
                    } else {
                        Ti.API.error(e);

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 119

                        _callback && _callback({
                            success : false,
                            model : null,
                            error : e
                        });
                    }
                });
            }
        // end extend

        return Model;
    },

    extendCollection : function(Collection) {
        _.extend(Collection.prototype, {

            // extended functions go here

        });
        // end extend

        return Collection;
    },
}

Two important things to notice about the model configuration:

■	 The setting of the adapter type tells Alloy which sync adapter file to load for this 
model.

■	 The collection_name associates the model to the correct ACS object. This enables 
the model to access methods such as create and update on objects.

NOTEYou won’t call a login method on the user model just yet. All models in Alloy must have a sync 
adapter associated with them. You create the model and specified the adapter as acs so now 
you need to create the sync adapter. You can use some of the code provided from the other 
adapters to get you started.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M120

Creating Appcelerator Cloud Service Sync Adapter
Since there is no sync adapter for Appcelerator Cloud Services, you’ll see how to construct a 
simple one for supporting the objects included in this application. This adapter will provide 
the basic functionality for interacting with the object and illustrates the minimal require-
ments for constructing your own sync adapters in the future.

It’s time to create the framework for the simple ACS sync adapter. Create a file called acs.js 
and add it to a newly created file path of app/alloy/sync/acs.js. Inside this file, add 
the following code as the basis for the adapter. (This code is copied from the localStorage.
js adapter and is the common setup code utilized in the Alloy implementation of sync 
adapters.)

function S4() {
    return ((1 + Math.random()) * 65536 |  
0).toString(16).substring(1);

}

function guid() {
    return S4() + S4() + "-" + S4() + "-" 
       + S4() + "-" + S4() + "-" + S4() + S4() + S4();
}

function InitAdapter(config) {
    Cloud = require("ti.cloud");
    Cloud.debug = !0;
    config.Cloud = Cloud;
}

function Sync(model, method, opts) {
   // Will be filled in later!!
}

var _ = require("alloy/underscore")._;

module.exports.sync = Sync;

module.exports.beforeModelCreate = function(config) {
    config = config || {};
    config.data = {};
    InitAdapter(config);
    return config;
};

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 121

module.exports.afterModelCreate = function(Model) {
    Model = Model || {};
    Model.prototype.config.Model = Model;
    return Model;
};

There are two important changes to note about this new code:

■	 All of the code from the sync function has been removed. It will be added later has 
you consider the specific concerns of each of the models you’re going to support with 
the adapter.

■	 The code in InitAdapter has changed to instantiate the ti.cloud object. This is 
done so you can access it within the sync adapter and so you can access the object 
through the model configuration. Using the ti.cloud object is how you will access 
the methods created by Appcelerator to interface with the Cloud Service’s objects.

Creating the Photo Model
You can use the Titanium Studio menu to create a new model object for the applications. 
Recall that you simply right-click on the project icon and select New ➪ Alloy Model. Then 
enter user as the model name. You’ll create a photo model to store the information from 
the photo using ACS.

You need to make only two adjustments to the file to set the adapter to acs and the 
collection_name to photos; the bulk of the work is done in the sync adapter that you’ll 
be updating. See the modified models/photo.js file for changes to the photo model:

exports.definition = {

  config : {

  "adapter" : {
       "type" : "acs",
       "collection_name" : "photos"
    }
  },

  extendModel : function(Model) {
    _.extend(Model.prototype, {

      // extended functions go here
    });
    // end extend

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M122

    return Model;
  },

  extendCollection : function(Collection) {
    _.extend(Collection.prototype, {

      // extended functions go here

    });
    // end extend

    return Collection;
  },
}

Modifying the ACS Sync Adapter to 
Support the Photo Model
Throughout the application, you’ll be referencing the Appcelerator Cloud Services ti.cloud 
library to access the methods you need to interact with the services. To implement the save 
functionality of the photo model, you make a call to Cloud.Photos.create(). See http://
docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Photos 
for more information about working with Photo Objects and Appcelerator Cloud Services.

You can modify the sync adapter you created at assets/alloy/sync/acs.js to handle 
photo models and user models. At this point, you’re going to add the processACSPhotos 
function with code, but processACSUsers will be added as a functional placeholder with 
no additional code.

You branch on the specific object type by using the collection_name specified in the 
model file for each of the specific models. You branch on the if-condition based on the spe-
cific object type you are processing in the sync adapter.

function Sync(method, model, options) {
    var object_name = model.config.adapter.collection_name;

    if (object_name === "photos") {
        processACSPhotos(model, method, options);
    } else if (object_name === "users") {
        processACSUsers(model, method, options);
    }
}

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Photos
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Photos
http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 123

Inside of processACSPhotos you’ll create a switch statement to support all of the REST 
verbs that the ACS adapter must support. For now, though, you’ll add only the functionality 
for creating a new model and saving it to Appcelerator Cloud Services.

/**
 * this is a separate handler for when the object being processed
 * is an ACS Photo
 */
function processACSPhotos(model, method, options) {
    switch (method) {
        case "create":
            // include attributes into the params for ACS
            Cloud.Photos.create(model.toJSON(), function(e) {
                if (e.success) {

                    // save the meta data with object
                    model.meta = e.meta;
                    
                    // return the individual photo object found
                    options.success(e.photos[0]);

                    // trigger fetch for UI updates
                    model.trigger("fetch");
                } else {
                    Ti.API.error("Photos.create " + e.message);
                    options.error(e.error && e.message || e);
                }
            });
            break;
        case "read":
        case "update":
        case "delete":
           // Not currently implemented, let the user know
           alert("Not Implemented Yet");
           break;
     }
}

To save the photo, you’ll make use of the functionality provided by the ACS library. All you 
need to do is ensure that you have the proper parameters set and the library does the rest. 
When passing the JavaScript object back into the success handler, the Backbone.js frame-
work will update the model object and return a properly structured and functional model.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M124

If you review the user.js file and look at the login function, you can see how the ti.
cloud object is used to call the login method on the user object. This is consistent with 
the pattern you’ll use through the user and photo models.

Model and Sync Adapter Working Together
Now that you have the sync adapter in place and have created the user and photo models, it’s 
time to access the Appcelerator Cloud Services features; but you must log in to Appcelerator 
Cloud Services before doing anything else. At this point in the development process, you 
simply log the user into ACS whenever the application starts up. This is not the final solu-
tion, but as stated earlier, this approach resolves the requirement of being logged in to access 
ACS objects and methods.

User Login with User Model
You’re going to use the administrative user created earlier through the console and log in to 
ACS. Because you do not want the application to continue until the user is successfully 
logged in, the idea is to open the main view only after a successful login.

Replace the code in index.js with the following code, which creates a user object from the 
model file and calls the login method that you added to the model object.

// when we start up, create a user and log in
var user = Alloy.createModel('User');

// we are using the default administration account for now
user.login("wileytigram_admin", "wileytigram_admin",  
function(_response) {

   if (_response.success) {
      // open the main screen
      $.index.open();
   } else {
      alert("Error Starting Application " + _response.error);
      Ti.API.error('error logging in ' + _response.error);
   }
});

This will log you in to Appcelerator Cloud Services and return the user object associated with 
the account. You’ll use this information later in the display and account management, but 
there is no use for the information at this time.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 125

Here’s a sample JSON response from logging in a user or querying a user object:

{
    "users": [
        {
            "id": "51507e0224b68308320dd2e4",
            "created_at": "2013-03-25T16:40:34+0000",
            "updated_at": "2013-03-27T02:50:54+0000",
            "external_accounts": [],
            "confirmed_at": "2013-03-25T16:40:34+0000",
            "username": "wileytigram_admin",
            "admin": "true",
            "stats": {
                "photos": {
                    "total_count": 8
                },
                "storage": {
                    "used": 13069205
                }
            }
        }
    ],
    "success": true,
    "error": false,
    "meta": {
        "code": 200,
        "status": "ok",
        "method_name": "loginUser",
        "session_id": "wQGKymtbiazRLsRSDSGq-tJp6n4"
    }
}

Using the Photo Model in the Feed View
In the earlier implementation, the app did not save the photos anywhere; it simply took the 
photo from the camera and added it to the row. You’re learning to incrementally add func-
tionality to the application, so now you’ll see how to change the code to save the photo to 
Appcelerator Cloud Services. After receiving a successful response from the server, the app 
will add the photo to the feed.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M126

Modifying processImage to Create a Photo Model and Save It to ACS
Calls to the Appcelerator Cloud Services are asynchronous so you need to change processImage 
to support the asynchronous nature of the Appcelerator Cloud Services library. You have to 
make the API call to save the photo to Appcelerator Cloud Services. Then, when the app receives 
a response from the server, you have to tell it to take the appropriate next steps.

In processImage, you need to provide Appcelerator Cloud Services method Cloud.
Photos.save() the correct parameters. You can use the image from the camera or gallery 
for the one required parameter, photo. Note that this code shows a temporary title; the final 
settings help define the sizes of the images you want the service to create.

Additional information on the parameters for this library call can be found at http://
cloud.appcelerator.com/docs/api/v1/photos/create.

var parameters = {
  "photo" : _mediaObject,
  "title" : "Sample Photo " + new Date(),
  "photo_sizes[preview]" : "200x200#",
  "photo_sizes[iphone]" : "320x320#",
  // We need this since we are showing the image immediately
  "photo_sync_sizes[]" : "preview"
}

This code creates two photos from the original image of various sizes. One size is for display-
ing the photo in the feed table, which is appropriate for displaying on mobile devices, and the 
other size is for a PC display, which would be a larger photo.

The ACS sync adapter is simple enough that, after setting the parameters, you just need to 
create the model and call the save method.

var photo = Alloy.createModel('Photo', parameters);

photo.save({}, {
  success : function(_model, _response) { debugger;
     Ti.API.info('success: ' + _model.toJSON());
     _callback({
           model : _model,
           message : null,
           success : true
           });
  },

www.it-ebooks.info

http://cloud.appcelerator.com/docs/api/v1/photos/create
http://cloud.appcelerator.com/docs/api/v1/photos/create
http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 127

  error : function(e) { debugger;
     Ti.API.error('error: ' + e.message);
     _callback({
           model : parameters,
           message : e.message,
           success : false
     });
  }
});

After you make these changes to the processImage method, you have integrated the ACS 
and Alloy models. The Alloy model save method takes an options parameter, which contains 
the success and error callbacks. The method returns from the ACS sync adapter the newly 
created model and the server’s response on success. When an error occurs, the save method 
returns the original parameters and the error message that Appcelerator Cloud Services 
returned. The save method then calls the callback method, called _callback, that was 
passed into processImage and attempts to add the image to the feed table.

Here’s a sample JSON object response when saving or querying a photo object:

{
    "photos": [
        {
            "id": "51525f8ee0b1ba6667001160",
            "filename": "b2b87f0.png",
            "size": 897507,
            "md5": "1f6555c2a04a89415c4fb412ed20f224",
            "created_at": "2013-03-27T02:55:11+0000",
            "updated_at": "2013-03-27T02:55:11+0000",
            "processed": false,
            "user": {
                "id": "51507e0224b68308320dd2e4",
                "created_at": "2013-03-25T16:40:34+0000",
                "updated_at": "2013-03-27T02:50:54+0000",
                "external_accounts": [],
                "confirmed_at": "2013-03-25T16:40:34+0000",
                "username": "wileytigram_admin",
                "admin": "true"
            },

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M128

            "title": "Sample Photo Tue Mar 26 2013 22:55:...",
            "urls": {
                "preview": "http://storage.cloud..._preview.png",
                "original": "http://storage.cloud... _original.png"
            },
            "content_type": "image/png"
        }
    ],
    "success": true,
    "error": false,
    "meta": {
        "code": 200,
        "status": "ok",
        "method_name": "createPhoto"
    }
}

Modifying the Feed Controller to Display a 
Photo After It Is Processed by the Cloud
This section returns to the cameraButtonClicked function in controllers/feed.js 
and shows you how to update the behavior of the success handler on the method call to work 
with the new asynchronous processImage method. The major changes are that the 
program now handles an error condition from processing the image and the object 
processResponse contains the model associated with the saved photo, as well as additional 
error information if needed.

processImage(event.media, function(processResponse) {

    if (processResponse.success) {
        // create the row
        var rowController = Alloy.createController("feedRow", 
processResponse.model);

    // add the controller view, which is a row to the table
    if ($.feedTable.getData().length === 0) {
        $.feedTable.setData([]);
        $.feedTable.appendRow(rowController.getView(), true);
    } else {

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 129

        $.feedTable.insertRowBefore(0, rowController.getView(), 
true);

        }
    } else {
        alert("Error saving photo " + processResponse.message);
    }
});

The final change is to update controllers/feedRow.js to support the new object you 
need to render. The real change here is that the app is now passing the results of the photo 
being saved to Appcelerator Cloud Services, which means you’re working with an Alloy.
Model object not a plain JavaScript object. There are two approaches to accessing the attri-
butes on the model, and they provide the same results—model.toJSON() and model.
attributes.

var model = arguments[0] || {};
//
// this is setting the view elements of the row view
// based on the arguments passed into the controller
//

$.image.image = model.attributes.urls.preview;
$.titleLabel.text = model.attributes.title || '';

// save the model id for use later in app
$.row_id = model.id || '';

Figure 5-18 shows the final screenshot of the app with cloud services integration.

List the Saved Photos at Startup
You don’t need to make any changes to the app in order for models/photo.js to support 
querying for all objects. You need to update the Appcelerator Cloud Services sync adapter to 
execute the query when the app needs to read the model or collection objects. The adapter 
must be intelligent enough to determine whether it is getting one object or a list of objects.

The ACS ti.cloud.js library has a method to get one Photo object by the object’s ID and 
another method to query or search for a photo object utilizing additional parameters. See 
http://cloud.appcelerator.com/docs/api/v1/photos/show and http://cloud. 
appcelerator.com/docs/api/v1/photos/query for more information about these 
methods.

www.it-ebooks.info

http://cloud.appcelerator.com/docs/api/v1/photos/show
http://cloud.appcelerator.com/docs/api/v1/photos/query
http://cloud.appcelerator.com/docs/api/v1/photos/query
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M130

Figure 5-18: Application displayed same as before, but now with a photo from ACS.

The following code shows how to update assets/alloy/sync/acs.js to support the 
read functionality in processACSPhotos(). It checks the parameters for the model 
passed in to see if it contains an ID, and if so, the program knows it’s retrieving an individual 
object. Otherwise, it assumes it’s getting a collection of objects.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 131

case "read":
   model.id && (opts.data.photo_id = model.id);

   var method = model.id ? Cloud.Photos.show : Cloud.Photos.query;

   method((opts.data || {}), function(e) {
      if (e.success) {
          model.meta = e.meta;
          if (e.photos.length === 1) {
              opts.success(e.photos[0]);
          } else {
              opts.success(e.photos)
          }
          model.trigger("fetch");
          return;
      } else {
          Ti.API.error("Cloud.Photos.query " + e.message);
          opts.error(e.error && e.message || e);
      }
  });    
break;

The program uses the ACS library call Cloud.Photos.show() when retrieving a single 
object and uses the method Cloud.Photos.query() when retrieving multiple objects.

Adding the loadPhotos() Method to the Controller
The following code updates controllers/feed.js to display a collection of photos 
returned from ACS sync adapter using the fetch method on the collection. The fetch 
method callbacks work the same as the save method callbacks on the model object in 
regards to responding to success and error response from the cloud services API. This code 
processes the results of the fetch by looping through the collection and adding each of the 
model objects to the table view. It then utilizes controllers/feedRow.js to create the 
rows for the table view. You will use this method to initialize the view with the photos saved 
in the cloud whenever the application starts up.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M132

$.initialize = function(){
    loadPhotos();
}

  // Add the above code for the function initialize to feed.js

function loadPhotos() {
    var rows = [];

    // creates or gets the global instance of photo collection
    var photos = Alloy.Collections.photo ||  
Alloy.Collections.instance("Photo");

    // be sure we ignore profile photos;
    var where = {
        title : {
            "$exists" : true
        }
    }

    photos.fetch({
        data : {
            order : '-created_at',
            where : where
        },
        success : function(model, response) {
            photos.each(function(photo) {
                var photoRow = Alloy.createController("feedRow", 
photo);

                rows.push(photoRow.getView());
            });
            $.feedTable.data = rows;
            Ti.API.info(JSON.stringify(data));
        },
        error : function(error) {
            alert('Error loading Feed ' + e.message);
            Ti.API.error(JSON.stringify(error));
        }
    });
}

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  5 â•‡ D E V E L O P M E N T  P R O C E S S  F O R  C R O S S - P L A T F O R M 133

Add the previous code to feed.js to supporting loading photos.

Next, you need to update controllers/index.js to display the recent photos when the 
application starts. You do this by calling the initialize method on the feed controller. 
You gain access to the public methods in the feed controller by using $.feedController.
initialize(), which is why the code adds the ID to the require objects when they were 
included in the view views/index.xml.

Here is the index.xml file exposing the other controllers through their IDs:

<Alloy>
    <TabGroup>
        <!-- Tabs included via <Require> tag -->
        <Require id="feedController" src="feed"/>
        <Require id="friendsController" src="friends"/>
        <Require id="settingsController" src="settings"/>
    </TabGroup>
</Alloy>

The initialization method, which is accessed from controllers/index.js, calls the 
loadPhotos method discussed previously.

// when we start up, create a user and log in
var user = Alloy.createModel('User');

// we are using the default administration account for now
user.login("wileytigram_admin", "wileytigram_admin",  
function(_response) {

    if (_response.success) {

        // open the main screen
        $.index.open();
        
        // pre-populate the feed with recent photos
        $.feedController.initialize();

    } else {
        alert("Error Starting Application " + _response.error);
        Ti.API.error('error logging in ' + _response.error);
    }
});

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M134

Summary
This chapter covered a lot of complex and new concepts, so feel free to return to it in the 
future. You will continue to add features in the application, but they will all require updates 
to the sync adapter to add new model objects. You will also always add view and controller 
pairs like you did here with the feed view and feed controller.

You also started working with the Appcelerator Cloud Services API to interact with the cloud 
services and predefined objects. The documentation links provided in this chapter are very 
thorough—they explain all of the parameters as well as how to utilize them in various 
scenarios.

Here’s a summary of the concepts that this chapter covered:

■	 Alloy project creation

■	 Photo and user model creation

■	 Extending Alloy model functionality

■	 Controller creation

■	 Getting views directly from the controller

■	 View creation

■	 Styling objects in Alloy

■	 Integration with camera and gallery API

■	 Working with the TableView control and creating complex table view rows

■	 Creating asynchronous adapters

■	 Using the Appcelerator cloud services library

■	 Working with Alloy collections

Chapter 6 takes the app to the next level. There, you learn to add functionality to the sync 
adapter to support the Appcelerator Cloud Service Review object, which you will use to allow 
the application to support comments on photos. You will follow the same pattern of creating 
additional models, views, and controller files to support the new feature.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 6
Integrat ing Comments

YOU WILL FOLLOW the same process used for creating the controllers in the previous chapter 
to create a comment.js controller and commentRow.js controller. The comment.xml view 
will hold a Titanium.UI.TableView, which will be a list of comments. The Titanium.
UI.TableViewRow will be represented as the commentRow.xml views. This pattern is the 
exact same one you used in the previous chapter, so I will move quickly through the content.

Creating the Comment Table View Layout
You’ll first create the comment.xml view file, similar in layout to the feed.xml with some 
different button functionality. Here, I have added a newCommentButton, which will be used 
for creating new comments. You connect that functionality to the controller later in the chap-
ter, but for now I am focusing on listing the comments associated with the photo selected.

I also have created the commentTable that will hold the list of comments added to the 
application and associated it with the currentPhoto.

<Alloy>
    <Window id="commentWindow" title="Comments">
        <RightNavButton>
            <Button id="newCommentButton">Comment</Button>
        </RightNavButton>
        <TableView id="commentTable"></TableView>
    </Window>
</Alloy>

Since you are building a cross-platform solution, you need to account for the differences in 
the Android solution. This code will work fine on iOS, but there are a few changes needed to 
support Android.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M136

First, you do not have the concept of navigation buttons on Android so you will need to add 
the platform identifier for iOS to make sure the button code is included only when building 
for that platform. The next change is to add an event listener when the window opens so the 
application can construct the menu and title bar for Android.

The modified comment.xml file with cross-platform support should look similar to the fol-
lowing code listing:

<Alloy>
    <Window id="commentWindow" title="Comments" onOpen="doOpen">
        <RightNavButton platform="ios">
            <Button id="newCommentButton">Comment</Button>
        </RightNavButton>
        <TableView id="commentTable"></TableView>
    </Window>
</Alloy>

Rendering the Rows Using a Different 
View and Controller
Along with the comment.xml view, you will use the commentRow.xml view to separate out 
the user interface and the functionality associated with the rows in the table.

In the row, you will show the user profile photo for the person who created the comment, the 
username and the timestamp of the comment, and finally the comment text.

You also keep track of the comment model ID so when you need to manipulate the model, 
you can retrieve the ID from the row object.

The following code is for the commentRow.xml view file, which is the XML representation of 
each row that you will render in the table.

<Alloy>
    <TableViewRow id="row" comment_id="">
        <View class="container">
            <ImageView id="avatar" />
            <View class="textContainer">
                <View class="userInfo" layout="horizontal">
                    <Label id="userName" />
                    <Label id="date" />
                </View>
                <Label id="comment"></Label>
            </View>

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 137

        </View>
    </TableViewRow>
</Alloy>

Styling the Views to Match the Mockups
You have not done much styling at this point in the book, but there is a need to do some 
layout here to get the rows to render the way they were designed in the original mockups. 
The way you apply styles in the view files is through the commentRow.tss style file and you 
use the .CSS format to specify classes for the elements and also apply specific styles to the 
elements.

"#row" : {
    selectedBackgroundColor : 'transparent',
    width : Ti.UI.FILL,
    height : Ti.UI.SIZE,
    horizontalWrap: false
},
".container": {
    backgroundColor : 'white',
    width : Ti.UI.FILL,
    height : Ti.UI.SIZE,
    top : 0,
    layout : 'horizontal',
    horizontalWrap: false,
},
".textContainer": {
    backgroundColor : 'white',
    width : Ti.UI.FILL,
    height : Ti.UI.SIZE,
    top : 0,
    bottom : '5dp',
    layout : 'vertical',
},
"#avatar" : {
    top : '5dp',
    left : '5dp', 
    width : '38dp',
    height : '38dp'
},
"#comment" : {
    top : '2dp',
    left : '5dp',
    textAlign : 'left',

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M138

    height : Ti.UI.SIZE,
    width : Ti.UI.FILL,
    font : {
      fontSize : '14dp'
    }
},
"#comment[platform=android]" : {
    width : Ti.UI.FILL,
    height : Ti.UI.SIZE,
    bottom : '2dp',
    textAlign : 'left',
    font : {
      fontSize : '14dp'
    }
},
".userInfo" : {
    width : Ti.UI.FILL,
    height : Ti.UI.SIZE,
    horizontalWrap : false,
    bottom : '2dp',
},
'#userName' : {
    top : '5dp',
    left : '5dp',
    width : Ti.UI.SIZE,
    height : Ti.UI.SIZE,
    font : {
        fontSize : '14dp',
        fontWeight : 'bold'
    },
},

'#date' : {
    top : '5dp',
    right : '5dp',
    width : Ti.UI.FILL,
    height : Ti.UI.SIZE,
    textAlign : 'right',
    font : {
        fontSize : '14dp',
    }
}

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 139

Figure 6-1 shows a more detailed mockup of each row, and you can see how the classes and 
styles are applied to the elements to give the desired outcome. Also notice the use of the 
platform-specific identifier on the #comment styling entry. Yon can make platform-specific 
styling selections on specific objects or classes using this approach.

Figure 6-1: Design mockup of how the rows are laid out.

Adding Logic to the Controllers
You’ll now start to look at the code from the controllers that will pull all this together. The 
comment.js controller will follow a simple pattern, whereby you will have a function for 
loading the items into the list, a function for adding a comment to the list, a function for 
deleting a comment from the list, and of course a function to initialize the view. Remember 
the objective here is to modularize the business logic into the controllers so that the control-
ler is getting data from models and passing it on to views to render.

Calling the New Controller from feed.js
The first thing you will need to do is pass in some parameters to the comment.js controller 
when it is created so you know which photo you are working with and where you came from, 
that is, which controller launched the comment controller. You could create global variables 
to track this information, but it’s better to minimize the use of global variables as a practice 
and instead pass parameters containing the appropriate information.

So when you create a comment.js controller it will look like the following code; the model 
and the current controller are passed in as an object parameter. This is how the current con-
troller is passed in by using the $ object. The model object is a local variable representing the 
photo the user is attempting to create a comment for or view the list of comments associated 
with it.

The following code is how the new comment controller will be created when called from 
feed.js:

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M140

var commentController = Alloy.createController("comment", {
    photo : model,
    parentController : $
});

Coding the comment.js Controller
Inside the comment.js controller file you will save the parameters as scope variables, with 
better names to make the code self-commenting.

// Get the parameters passed into the controller
var parameters = arguments[0] || {};
var currentPhoto = parameters.photo || {};
var parentController = parameters.parentController || {};

The first thing you need to do is load the comments into the view when the controller is first 
opened. You can accomplish this through the use of two functions. First, you’ll create an 
initialization function which will be exposed so it can be called to initialize or re-initialized 
the controller when needed, at this point, the only statement in the $.initialize func-
tion will be a call to another function, loadComments. In loadComments, you will query 
Appcelerator Cloud Services (ACS) to get a list of all of the comments associated with the 
currentPhoto object passed into the controller.

At this point your comment.js controller should look similar to this:

var parameters = arguments[0] || {};
var currentPhoto = parameters.photo || {};
var parentController = parameters.parentController || {};

function loadComments(_photo_id) {
}

$.initialize = function() {
    loadComments();
};

Cross-Platform Support in Comment View
When you created the comment view, there were platform-specific components added, spe-
cifically the right navigation button that is used to add a new comment. Since the concept of 
the right navigation button is specific to iOS, you will need an alternative approach for pro-
viding that functionality on Android.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 141

On the window open event, you will check for Android and if so, you create the actionBar 
from the window’s activity and associate the menuItem for a new comment to the 
actionBar.

The code for the doOpen function is listed next and should be added to comment.js:

function doOpen() {
    if (OS_ANDROID) {
        var activity = $.getView().activity;
        var actionBar = activity.actionBar;

        activity.onCreateOptionsMenu = function(_event) {

            if (actionBar) {
                actionBar.displayHomeAsUp = true;
                actionBar.onHomeIconItemSelected = function() {
                    $.getView().close();
                };
            } else {
                alert("No Action Bar Found");
            }

            // add the button/menu to the titlebar
            var menuItem = _event.menu.add({
                title : "New Comment",
                showAsAction : Ti.Android.SHOW_AS_ACTION_ALWAYS,
                icon : Ti.Android.R.drawable.ic_menu_edit
            });
            
            // event listener
            menuItem.addEventListener("click", function(e) {
                handleNewCommentButtonClicked();
            });
        };
    }
};

If you notice in this code there is a call to a function named handleNewCommentButtonâ•‰
Clicked. This function will be called from the menu selection and also the newCommentBtn, 
which is displayed on iOS only. You can add the iOS event listener and the function stub 
now; the code for the function will be presented later in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M142

Here is the event listener and function stub added to comment.js:

OS_IOS && $.newCommentButton.addEventListener("click",  
handleNewCommentButtonClicked);

function handleNewCommentButtonClicked(_event) {
    // FILLED OUT LATER IN CHAPTER
}

Coding the commentRow Controller
You will be using the commentRow.js controller to generate each of the rows that are ren-
dered in the tableview. The controller code will simply take the model’s attributes and add 
them to specific view objects for display.

At this point you should add the following code to the commentRow.js controller file to 
handle the parameters that are passed in when the controller is created. There is one argu-
ment required and that is the model representing the comment that will be rendered by this 
instance of the controller.

You also need to render some information about the user in the comment row, so to make 
processing the user object easier, you will add a new variable that represents the user, which 
is an attribute of the photo model passed in.

var model = arguments[0] || {};
var user = model.attributes.user;

If you recall how you queried Appcelerator Cloud Services in the previous chapter, then all is 
good because you will follow the exact same pattern thanks to the ACS sync adapter and the 
model you will create to support comments.

Adding Models and Collections 
for Querying Comments
You need to open the model directory and create a new file called comment.js; add the fol-
lowing content to the file. The only major changes from the default model.js file are the 
inclusion of the type and collect_name properties.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 143

exports.definition = {

    config : {
        "adapter" : {
            "type" : "acs",
            "collection_name" : "reviews"
        }
    },

    extendModel : function(Model) {
        _.extend(Model.prototype, {});
        return Model;
    },

    extendCollection : function(Collection) {
        _.extend(Collection.prototype, {});
        return Collection;
    },
}

For this model, you will be using the Appcelerator Cloud Service object called Reviews. You 
can get additional information about the object here: http://cloud.appcelerator.
com/docs/api/v1/reviews/info.

You are going to go back to the Appcelerator Cloud Services Alloy sync adapter and add some 
additional code to support working with the new comment model; you will start with the 
Sync method in the acs.js adapter. Add the processACSComments method to the func-
tion so you can work with review objects in the adapter. This example has added an addi-
tional condition to the if statement that will check the object_name for the model and 
then branch, in this case, to the processACSComments function.

function Sync(method, model, options) { debugger;
    var object_name = model.config.adapter.collection_name;

    if (object_name === "photos") {
        processACSPhotos(model, method, opts);
    } else if (object_name === "users") {
        processACSUsers(model, method, opts);
    } else if (object_name === "reviews") {
        processACSComments(model, method, opts);
    }
}

www.it-ebooks.info

http://cloud.appcelerator.com/docs/api/v1/reviews/info
http://cloud.appcelerator.com/docs/api/v1/reviews/info
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M144

Now you have a function that you will use to work with the comment model. You have access 
to the ACS library APIs, which make interacting with these objects pretty straightforward 
and the abstraction of the model objects through Alloy and Backbone provide a clean consis-
tent interface.

To get all of the reviews/comments for the photo, you’ll use the query method; see this 
documentation for a complete listing of the parameters for the method: http://cloud.
appcelerator.com/docs/api/v1/reviews/query.

Inside the processACSComments function, you have a switch statement that maps to the 
REST functions create, update, read, and delete, so all you have to do is add the appropriate 
ACS library calls and return the objects the same way you did in the previous chapter when 
working with photos.

function processACSComments(model, method, opts) {

    switch (method) {
        case "create":
        break;
        case "read":
             Cloud.Reviews.query((opts.data || {}), function(e) {
                if (e.success) {
                    model.meta = e.meta;
                    if (e.reviews.length === 1) {
                        opts.success && opts.success(e.reviews[0]);
                    } else {
                        pts.success && opts.success(e.reviews)
                    }
                    model.trigger("fetch");
                    return;
                } else {
                    Ti.API.error("Reviews.query " + e.message);
                    opts.error && opts.error(e.message || e);
                }
            });
            break;
        case "update":
        case "delete":
            break;

     }
}

www.it-ebooks.info

http://cloud.appcelerator.com/docs/api/v1/reviews/query
http://cloud.appcelerator.com/docs/api/v1/reviews/query
http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 145

You are using the Cloud.Reviews.query method to get all of the comments. You pass 
parameters into the query using opts.data and the method will return the results or an 
error message if appropriate. You then will need to add the proper callback function in the 
comment.js controller to handle the results and then add them to the tableView you cre-
ated in the previous section.

You will use the same approach for adding the functionality to create a single comment to 
associate with the photo and for deleting a comment that was previously associated with the 
photo. The Cloud.Reviews object has the corresponding methods of Cloud.Reviews.
create and Cloud.Reviews.remove.

When you create a comment, you will utilize all of the object properties specified in the back-
bone model as the parameters needed for the Cloud.reviews.create method. See 
http://cloud.appcelerator.com/docs/api/v1/reviews/create.

Add the following code to the switch statement in the method processACSComments to 
handle the call to the adapter and create a new comment in the application:

case "create":
    var params = model.toJSON();

    Cloud.Reviews.create(params, function(e) {
        if (e.success) {
            model.meta = e.meta;
            opts.success && opts.success(e.reviews[0]);
            model.trigger("fetch");
        } else {
            Ti.API.error("Comments.create " + e.message);
            opts.error && opts.error(e.message || e);
        }
    });
    break;

When you delete a comment, you will need a comment/review ID and the photo_id as the 
parameters for the Cloud.reviews.remove method. See http://cloud.appcelerator.
com/docs/api/v1/reviews/delete.

Add the following code to the switch statement in the method processACSComments to 
handle the call to the adapter and delete an existing comment in the application.

case "delete":
    var params = {};

www.it-ebooks.info

http://cloud.appcelerator.com/docs/api/v1/reviews/create
http://cloud.appcelerator.com/docs/api/v1/reviews/delete
http://cloud.appcelerator.com/docs/api/v1/reviews/delete
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M146

    // look for the review id in opts or on model
    params.review_id = model.id || (opts.data && opts.data.id);

    // get the id of the associated photo
    params.photo_id = opts.data && opts.data.photo_id;

    Cloud.Reviews.remove(params, function(e) {
        if (e.success) {
            model.meta = e.meta;
            opts.success && opts.success(model.attributes);
            model.trigger("fetch");
            return;
        }
        Ti.API.error(e);
        opts.error && opts.error(e.error && e.message || e);
    });
                                 break;

Finishing the Comment Controllers
So back in the comment.js controller file, you will set up the collection to use throughout 
the controller and then add some logic to the loadComments method, which when called 
will create the list of comments to be displayed in the view.

At the top of the comment.js file, add the following statement to create an instance of the 
comments collection to be used throughout the controller:

var comments = Alloy.Collections.instance("Comment");

Next, go to the loadComments function to add the logic. You add objects to the collection 
by querying Appcelerator Cloud Services using the currentPhoto object’s ID property.

You create the parameters for the query using currentPhoto.id, specify that you want 
the query to return the first 100 comments by setting the per_page property, and finally 
order the comments by the creation date, which you do by setting the order property.

var params = {
    photo_id : currentPhoto.id,
    order : '-created_at',
    per_page : 100
};

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 147

You will be using the empty collection object comments, and the parameters are set for the 
query, so all that is left to do is call the fetch method on the comment collection object.

Add the following code to the loadComments function immediately after the previous lines 
of code:

var rows = [];

comments.fetch({
    data : params,
    success : function(model, response) {
        comments.each(function(comment) {
            var commentRow = Alloy.createController("commentRow",
                                                          comment);
            rows.push(commentRow.getView());
        });
        // set the table rows
        $.commentTable.data = rows;
    },
    error : function(error) {
        alert('Error loading comments ' + e.message);
        Ti.API.error(JSON.stringify(error));
    }
});

The commentRow Controller
In the comment.js controller file, you can see where the rows are being created for the 
$.commentTable by creating a new commentRow.js controller for each of the items from 
the collection and using the primary view from the commentRow.js as the row object. If 
you take a look at the code from the commentRow.js controller, you can see a few things 
going on there as the code pulls the properties from the comment object and constructs the 
row for the comment, based on the model object passed in as a parameter.

When the commentRow.js controller is created by the calling function, it is passed the model 
object as a parameter. You will access the model properties by using the model.attributes 
property. You will also need to work with the user object associated with the model variable and 
to make the code easier to read, you can create a variable called user and set its value to reflect 
the properties associated with the comment creator/user. The commentRow controller code is 
made up of statements to get properties from objects and set properties on objects in the 
commentRow.xml view, including the ID of the model that’s not displayed but saved in the 
attribute $.row.comment_id. This is done so when the application responds to click events 
on rows, it can determine the ID of the object by looking at the comment_id property.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M148

One of the properties that will be rendered in the view is the date the comment was created. 
In order to properly format the date in the view, you will need to include a third-party library, 
momentjs, which is distributed with Appcelerator Alloy. To use this library in this controller, 
you will need to include another requires statement at the top of commentRow.js.

var moment = require('alloy/moment');

Add the following code to commentRow.js to display the formatted information for the 
model provided as a parameter:

if (user.photo && user.photo.urls) {
    $.avatar.image = user.photo.urls.square_75 ||  
user.photo.urls.thumb_100 || user.photo.urls.original;

}

$.comment.text = model.attributes.content;

// check for first name last name...
$.userName.text = (user.first_name || "") + " " + (user.last_name 
|| "");

// if no name then use the username
$.userName.text = $.userName.text.trim().length !== 0 ?  
$.userName.text.trim() : user.username;

$.date.text = moment(model.attributes.created_at).fromNow();

// save the model id for use later
$.row.comment_id = model.id || '';

Connecting the Dots . . . Showing 
the Comment List
Now that you have created the new comment section of the application, you need to provide 
the method for the user to get access to it. You will do this by connecting the comment 
button to an event listener that will trigger the whole process when clicked.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 149

Back to the feed and feedRow Controllers
First you need to update the feed.js controller so when the user clicks on the commentâ•‰
Button, all comments associated with the selected image in the feed.xml view will be dis-
played. Since you are following the Appcelerator Alloy pattern, you will instantiate a new 
controller comment.js and then render the comment.xml view of that controller.

If you review the code for the feedRow.xml, you can see the commentButton added to 
each row and can see the row_id attribute, which is set to the ID of the photo displayed in 
this row.

<!-- file: feedRow.xml -->
<Alloy>
   <TableViewRow id="row" row_id="">
      <View class="container">
      <Label id="titleLabel"></Label>
      <View id="imageContainer">
          <ImageView id="image"></ImageView>
       </View>
       <View id="buttonContainer">
          <Button id="commentButton">Comment</Button>
          <Button id="shareButton">Share</Button>
       </View>
   </View>
   </TableViewRow>
</Alloy>

Here is the line in feedRow.js controller where the model ID is set.

$.row.row_id = model.id || '';

In Appcelerator Alloy, events bubble up by default. What this means is that the application 
can listen for click events at the Titanium.UI.TableView level, on the feedTable cre-
ated in the feed.js controller, and then determine if the click was done on a specific button 
from the feedRow.xml view.

To do that, create an event listener on the whole table and have a function that is called for 
each click on the table. Add the following code to the beginning of the feed.js controller 
file.

$.feedTable.addEventListener("click", processTableClicks);

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M150

When the application gets a click event, an event parameter that contains information about 
the event and the source object of the event is passed as a parameter. In this case, you are 
looking for a click on the commentButton.

In the processTableClicks function, the application branches on the ID of the object 
that was clicked, utilizing the object’s ID to determine if it was the commentButton or the 
shareButton. The function handleCommentButtonClicked is added to the feed.js 
controller file to respond to clicks on the commentButton and create the controller for ren-
dering the comment view.

The following code should be added to the feed.js controller:

function processTableClicks(_event) {
   if (_event.source.id === "commentButton") {
       handleCommentButtonClicked(_event);
   } else if (_event.source.id === "shareButton") {
      alert('Will do this later!!');
   }
}

function handleCommentButtonClicked(_event) {
   var collection = Alloy.Collections.instance("Photo");
   var model = collection.get(_event.row.row_id);

   var controller = Alloy.createController("comment", {
      photo : model,
      parentController : $
   });

   // initialize the data in the view, load content
   controller.initialize();

   // open the view
   Alloy.Globals.openCurrentTabWindow(controller.getView());

}

The presence of Alloy.Globals is new in the application; it is a place to store global func-
tions or properties without polluting the global namespace. In this example you will be 
adding the function openCurrentTabWindow to the application and you want global 
access to it.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 151

Open index.js controller and add the following function to the bottom of the file.

Alloy.Globals.openCurrentTabWindow = function(_window) {
	 $.tabGroup.activeTab.open(_window);
};

So now all of the functions are in place to detect the click on the commentButton, create the 
new controller, and render the table view to list the comments. If you compile and run the code 
the list should display fine, but with no comments (see Figures 6-2 and 6-3). The next step is to 
create the functionality for adding comments so you will have something to display in the view.

Figure 6-2: Comments list view in iOS.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M152

Figure 6-3: Comments list view in Android.

Adding a New Comment to a Photo
The next step is to create the view and the associated controller for adding new comments. 
This controller will be called from the comment.js controller that you created previously 
and will be rendered in a completely new window.

In this section, there will be some cross-platform issues you need to address in the applica-
tion to provide platform-specific functionality; but it will still be much easier than writing 
two separate code bases.

Creating a New Comment Controller and View
Right-click on the project and select New ➪ Controller. Name the file commentInput. This 
command will create the controller, view, and style file to support the object you just created. 

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 153

The comment input view is quite simple; you need a Save button, a Cancel button, and a text 
field to hold the contents; the view is laid out as follows.

<!-- file: commentInput.xml -->
<Alloy>
   <NavigationWindow id="navWindow" platform="ios">
      <Window id="mainWindow" title="New Comment" onOpen="doOpen" >
         <LeftNavButton >
            <Button id="cancelButton">Cancel</Button>
         </LeftNavButton>
         <RightNavButton>
            <Button id="saveButton">Save</Button>
         </RightNavButton>
         <TextArea id="commentContent"/>
      </Window>
   </NavigationWindow>

   <!-- ANDROID WINDOW -->
   <Window id="mainWindow" title="New Comment" onOpen="doOpen"           
                                             platform="android">
      <ScrollView>
       <TextArea id="commentContent"/>
   </ScrollView>
   </Window>
</Alloy>

You can see that there are platform attributes added to indicate that the right and left naviga-
tion buttons are set on the iPhone only. There is also an event listener called onOpen that is 
specified in the view file. This event listener will be created in commonInput.js and will set 
up the menu bar and buttons for the Android version of the application.

You need to do some basic styling here on this view to get the textArea to appear in the 
proper location on the screen and to ensure you get the appropriate keyboard behavior. There 
are also some cross platform differences that you will account for in the layout of the window.

The following code is added to commentInput.tss to achieve the desired results in the 
user interface on iOS:

// file: commentInput.tss
"#commentContent" : {
    borderWidth: 2,
    borderColor: '#bbb',
    borderRadius: 5,
    top:'5dp',

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M154

    left:'5dp',
    right:'5dp',
    bottom:'240dp',
    color : 'black',
    font: {
        fontSize:'16dp'
    },
    suppressReturn:false,
    autocapitalization: Ti.UI.TEXT_AUTOCAPITALIZATION_NONE,
    autocorrect: true
}

For Android, to get the keyboard to appear properly, you will need to put the textArea in a 
ScrollView so the ScrollView object and the TextArea object need additional proper-
ties assigned in the .tss file.

'#commentContent[platform=android]' : {
    height:'240dp',
},
'ScrollView[platform=android]' : {
    contentHeight:'240dp',
}

Properties for Ti.UI.TextArea can be found here: http://docs.appcelerator.
com/titanium/latest/#!/api/Titanium.UI.TextArea.

Most of these properties are pretty self-explanatory, but I do want to mention the 
suppressReturn:false setting. It allows the user to enter newlines in the textArea. If 
you did not set this property on the textArea and the user pressed the Return key, the 
keyboard would close, which is not the desired behavior.

Adding Code to the Comment Input Controller
The controller has to handle a few tricky tasks beyond what you have done in the past. First, 
you need to get the parameters from the creation of the controller object, which is done by 
parsing the arguments[0] object provided by framework. This is returning a JavaScript 
hash that is then assigned to the local variable parameters. The following code should be 
added to the beginning of commentInput.js.

The first two parameters’ purposes should be clear; they represent the photo to associate the 
comment to and the parentController is the controller that instantiated this controller. 
The last parameter assigned to the local variable callbackFunction is the function called 
when this controller is closing; it is discussed in more detail later.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.UI.TextArea
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.UI.TextArea
http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 155

// file: commentInput.js
var parameters = arguments[0] || {};
var currentPhoto = parameters.photo || {};
var parentController = parameters.parentController || {};
var callbackFunction = parameters.callback || null;

You need to add the event listeners for the two buttons you have created in the window; one 
for when the user saves the message, called saveButton and one for when the user cancels 
the action, called cancelButton. Since these buttons are included in the user interface only 
when the application is built for iOS devices, the code checks for the device’s OS to be iOS 
before adding the event listeners to these buttons.

OS_IOS && $.saveButton.addEventListener("click", 
handleButtonClicked);

OS_IOS && $.cancelButton.addEventListener("click", 
handleButtonClicked);

You also need to add the function for the open window event listener called doOpen. In this 
event listener, you set the focus of the window to the commentContent, which is the 
textArea added to the window. Setting the focus of the window to a textArea will force 
the device to display the keyboard when the window is shown.

On Android devices, the event listener has more duties; it will add a menuItem to the 
actionBar to save comments when selected. In the event listener you will also connect the 
menu selection to the same event listener that the saveButton on iOS responds to.

When you are working with a window directly and not with the TabGroup, you access the 
actionBar through the current window’s activity and not through the TabGroup activity.

The doOpen function does pretty much what I said; it just sets the focus of the comment 
input window.

function doOpen() {
    if (OS_ANDROID) {

        $.getView().activity.onCreateOptionsMenu=function(_event) {

            var activity = $.getView().activity;
            var actionBar = $.getView().activity.actionBar;

            if (actionBar) {
                actionBar.displayHomeAsUp = true;
                actionBar.onHomeIconItemSelected = function() {

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M156

                    $.getView().close();
                };
            } else {
                alert("No Action Bar Found");
            }

            // add the button to the titlebar
            var mItemSave = _event.menu.add({
                id : "saveButton",
                title : "Save Comment",
                showAsAction : Ti.Android.SHOW_AS_ACTION_ALWAYS,
                icon : Ti.Android.R.drawable.ic_menu_save
            });

            // add save menu item
            mItemSave.addEventListener("click", function(_event) {
                _event.source.id = "saveButton";
                handleButtonClicked(_event);
            });

            var mItemCancel = _event.menu.add({
                id : "cancelButton",
                title : "Cancel",
                showAsAction : Ti.Android.SHOW_AS_ACTION_ALWAYS,
                icon :
            Ti.Android.R.drawable.ic_menu_close_clear_cancel
            });

            // add cancel menu item
            mItemCancel.addEventListener("click",function(_event) {
                _event.source.id = "cancelButton";
                handleButtonClicked(_event);
            });
        };
    }

    // set focus to the text input field, but
    // use set time out to give window time to draw
    setTimeout(function() {
        $.commentContent.focus();
    }, 250);

};

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 157

The function handleButtonClicked supports the event for both buttons in the window 
since the behavior is very similar. If the saveButton is clicked, you call the callbackâ•‰
Function with the appropriate parameters and then close the window. The returnParams 
object is set with the content from the textArea and a success property is set to true or 
false to indicate if the user wanted to cancel the comment input action.

// file: commentInput.js
function handleButtonClicked(_event) {
    // set default to false
    var returnParams = {
        success : false,
        content : null
    };

    // if saved, then set properties
    if (_event.source.id === "saveButton") {
        returnParams = {
            success : true,
            content : $.commentContent.value
        };
    }

    // return to comment.js controller to add new comment
    callbackFunction && callbackFunction(returnParams);

}

Now that the new controller and view are set up and allow the user to add comments to the 
photos, you can return to the comment.js controller to pull it all together.

Back to the Comment.js Controller
First, you will add the code for the event listener handler, which follows the familiar pattern 
for creating a controller and passing in some parameters. Remember this function will be 
called when either the button is clicked or the menu item is selected on an Android device.

// file: comment.js
function handleNewCommentButtonClicked(_event) {
   var navWin;
   var inputController = Alloy.createController("commentInput", {
      photo : currentPhoto,
      parentController : $,
      callback : function(_event) {

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M158

         inputController.getView().close();
         inputCallback(_event);
      }
   });

   // open the window
   inputController.getView().open();
}

The callback from the commentInput.js controller will create the new comment if data is 
returned successfully from the controller; otherwise an error alert is displayed. As you can 
see in this function, the inputCallback function is passed as a parameter into the 
commentInput controller. The code for inputCallback should be added to the comment.js 
file after the handleNewCommentButtonClicked function.

See the code for the inputCallback function:

// file: comment.js
function inputCallback(_event) {
    if (_event.success) {
        addComment(_event.content) ;
    } else {
        alert("No Comment Added");
    }
}

Saving the Comment and Updating the Table
If a successful response is received from inputCallback, then you create a new comment for 
the currentPhoto by calling a new function called addComment. Using the comment.js 
model created earlier in the chapter and the data returned from the controller to create a new 
comment model, you can begin to structure the function.

The addComment function in the comment.js controller follows the same pattern for cre-
ating a model object and adding it to a table view as was used when creating the photo object 
in the previous chapter. The function will make a call to the ACS sync adapter using the 
backbonejs save method, and you will then add the row to the $.commentTable using 
the commentRow.js controller discussed earlier in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 159

The code for the function is as follows:

function addComment(_content) {
    var comment = Alloy.createModel('Comment');
    var params = {
        photo_id : currentPhoto.id,
        content : _content,
        allow_duplicate : 1
    };

    comment.save(params, {
        success : function(_model, _response) {
            Ti.API.info('success: ' + _model.toJSON());
            var row = Alloy.createController("commentRow", _model);

            // add the controller view, which is a row to the table
            if ($.commentTable.getData().length === 0) {
                $.commentTable.setData([]);
                $.commentTable.appendRow(row.getView(), true);
            } else {
                $.commentTable.insertRowBefore(0,row.getView(),
                                                             true);
            }
        },
        error : function(e) {
            Ti.API.error('error: ' + e.message);
            alert('Error saving new comment ' + e.message);
        }
    });
}; 

The code does the same check of the table to see if it is empty so the comment can be added 
to the top of the table or appended to the table.

The parameter photo_id is set by the currentPhoto object passed into the controller 
when it is instantiated, as discussed earlier in the chapter. The text for the comment is set in 
the _content parameter and is returned by the commentInputjs controller.. By setting 
allow_duplicate, you enable users to create more than one comment for the photo. 
Additional information on the parameters for saving a comment can be found at http://
cloud.appcelerator.com/docs/api/v1/reviews/create.

www.it-ebooks.info

http://cloud.appcelerator.com/docs/api/v1/reviews/create
http://cloud.appcelerator.com/docs/api/v1/reviews/create
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M160

At this point, you should be able to add comments to the photos in your application. The 
comments should be associated with the photos. When appropriate, clicking on the com-
ment button in the feed view should cause the list of comments to appear and be ordered by 
date. See Figures 6-4 and 6-5.

Figure 6-4: You can now add comments, as shown in this iOS view.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 161

Figure 6-5: The Android view of the New Comment feature.

Figures 6-6 and 6-7 show the application with some sample comments entered into it.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M162

Figure 6-6: The Comments list view in iOS.

Figure 6-7: The Comments list view in Android.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 163

Deleting Comments 
Now that you have completed the process of adding a comment to the photo, you will add func-
tionality to delete a comment. This approach will allow the users to delete only the comments 
that they created. This solution will be implemented on iOS such that the user will swipe the 
table row to display the ability to delete the item and then make the ACS API call to delete the 
comment from the system. The Android solution will be to respond to a longpress event on 
the tableRow.

For this functionality to work, there needs to be some initial setup code added to the 
comment.js controller. First update the table and set the editable property to true; this 
will allow the swipe event on the table row to display the delete button.

Next add event listeners for the longpress event on Android and the delete event on the 
table for supporting iOS.

The setup code to be added to the top of comment.js is listed here; you should add the code 
near the other event listeners:

$.commentTable.addEventListener("delete", handleDeleteRow);
$.commentTable.addEventListener("longpress", handleDeleteRow);
$.commentTable.editable = true;

Now in the event handler function called handleDeleteRow, you are provided information 
on the row clicked from the _event parameter. From there you can get the commentId_ 
attribute that was added to the tableRow. This ID then can be used to get the selected 
model from the Comment collection instance. The model object’s destroy function is called 
with the appropriate parameters—the currentPhoto.id from the arguments passed into 
the controller and the model.id from the comment collection. If the delete is unsuccessful 
an alert is displayed. In both cases, the table is completely reloaded to ensure the proper 
models are displayed for the user.

The code for handleDeleteRow is listed next and should be added to the comment.js 
controller anywhere after the event handlers are added to the file.

function handleDeleteRow(_event) {
  var collection = Alloy.Collections.instance("Comment");
  var model = collection.get(_event.row.comment_id);

  if (!model) {
    alert("Could not find selected comment");
    return;
  } else {

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M164

    if (OS_ANDROID) {
      var optionAlert = Titanium.UI.createAlertDialog({
        title : 'Alert',
        message : 'Are You Sure You Want to Delete the Comment',
        buttonNames : ['Yes', 'No']
      });

      optionAlert.addEventListener('click', function(e) {
        if (e.index == 0) {
          deleteComment(model);
        }
      });
      optionAlert.show();
    } else {
      deleteComment(model);
    }
  }
}

handleDeleteRow calls deleteComment where the ACS adapter is used to delete the 
comment from the system. The code for deleteCommented is listed here:

function deleteComment(_comment) {
  _comment.destroy({
    data : {
      photo_id : currentPhoto.id, // comment on
      id : _comment.id // id of the comment object
    },
    success : function(_model, _response) {
      loadComments(null);
    },
    error : function(_e) {
      Ti.API.error('error: ' + _e.message);
      alert("Error deleting comment");
      loadComments(null);
    }
  });
}

Figures 6-8 and 6-9 show what the users will see when they attempt to delete a comment in 
the application.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  6 â•‡ I N T E G R A T I N G  C O M M E N T S 165

Figure 6-8: Deleting a comment in iOS.

Figure 6-9: The comments delete alert from using the long press in Android.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M166

Summary
In this chapter you extended the functionality of the ACS sync adapter to support an addi-
tional model called comments, which is important since this pattern will be continued 
through the book.

The benefits of cross-platform development were demonstrated by how you are able to pro-
vide the platform-specific user experience of the actionBar on Android and the navigation 
group title bar pattern on iOS all from the same code base. This approach allows for the 
development of solutions that do not have a one-size-fits-all approach to interface design.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 7
Integrat ing User  Accounts  with 
A ppcelerator  C loud Ser vices

TO INTEGRATE USER accounts into the mobile application, you will use the Appcelerator 
Cloud Service user object discussed in Chapter 5 and leverage the built-in social medial func-
tionality from Appcelerator’s Facebook module and Appcelerator Cloud Service’s ability to 
link a user object to Facebook credentials.

After you create the user account, you will be able to log in with the user and update the 
user’s information in the Users Settings page, which is covered in Chapter 11.

Adding the Login User Interface
You need to create a few more controller view combinations to support the three new 
screens—the User Choice, Create User Account, and Login screens. For this application you 
will integrate all of the screens into one view called the login view, which will have an associ-
ated controller to interact with the application.

You create the login controller the same as you have created the previous controllers and 
then open the login.xml view file associated with the controller you just created.

You will start off with the window object as the container for the remainder of the screen 
elements, but in this case you will also add a ScrollView to the window container. You are 
adding the ScrollView to the container to help manage the user interface when the key-
board is displayed for the user to enter text into fields. What the ScrollView does is auto-
matically scroll the window contents so the text entry field is visible; this is a nice feature 
when filling out forms in the mobile application.

www.it-ebooks.info

http://www.it-ebooks.info/


168 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

<Alloy>
  <Window id="index" class="loginContainer" >
    <ScrollView>
    <!-- main content for the screen goes here -->
    </ScrollView>
  </Window>
</Alloy>

The views will be constructed by placing all of the objects into the container and hiding and 
showing the proper container based on the action the users take. For example, when the user 
clicks the login button, you will hide everything in the view and then fade in the controls and 
user interface elements for the login action. You will use another one of the Appcelerator 
built-in libraries called animations.js to easily integrate this functionality.

Next you start to add all the containers to the main loginContainer to create sections 
that you will hide or show based on the user’s actions. You will add a label to display some 
welcome text to the users so they are aware of the purpose of the page, and then you will add 
the buttons that represent the choices that user had when launching the application

<View id='homeView'>
    <Label id='welcomeText'></Label>
    <View id="hvButtonContainer" >
        <Button id="showCreateAccountBtn" title="Create Account"/>
        <Button id="showLoginBtn" title="Login"/>
        <Button id="showLoginFBBtn" title="Facebook Connect" />
    </View>
</View>

You can see the use of view containers to help style and lay out the contents of the page. It is 
a helpful pattern that you will find useful when trying to get the exact layout and spacing for 
your user interface. See Figures 7-1 and 7-2.

// login.tss
'#homeView' : {
    visible : true,
    top : '90dp',
    layout: 'vertical',
    backgroundColor : 'transparent'
},

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 169

'#hvButtonContainer' : {
    top:'20dp',
    width:'150',
    height:Ti.UI.SIZE,
    layout: 'vertical'
},
'#welcomeText' :{
    text : "Welcome Text Goes Here For the App",
    font:{
        fontSize:'24dp',
        fontWeight : 'bold'
    }
},

Figure 7-1: The initial home view in iOS.

www.it-ebooks.info

http://www.it-ebooks.info/


170 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

Figure 7-2: The initial home view in Android.

Next you add the container for the login view; here you will include the text fields for the 
user to enter the username and password. You will set the password type as a property of the 
password text field to have the password masked when the user enters the text; this code is 
added to the login.xml file:

<View id='loginView'>
    <Label id='loginText'></Label>
    <View id="lvContainer" >
        <TextField id="email" class='tfWrapper' />
        <TextField id="password" class='tfWrapper' />

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 171

        <View class="centerHelper">
            <Button id="doLoginBtn" title="Login" />
            <Button id="cancelLoginBtn" title="Cancel" />
        </View>
        <Button id="forgotPasswordBtn" title="Forgot Password" />
    </View>
</View>

You add a similar label as on the previous container so you can display some text to inform 
the users of the purpose of the page. The last element you will add to the view container is a 
button for the users to recover the password if they forget. See Figures 7-3 and 7-4.

// login.tss
'#loginView' : {
    visible : false,
    width:Ti.UI.SIZE,
    height:Ti.UI.SIZE,
    top : '90dp',
    layout:'vertical',
    borderColor :'transparent'
},
'#loginText' :{
    text : "Login Text Goes Here For the App",
    font:{
        fontSize:'24dp',
        fontWeight : 'bold'
    }
},
'#lvContainer' : {
    top:'20dp',
    width:'280dp',
    height:Ti.UI.SIZE,
    layout:'vertical',
    borderColor :'orange',
    borderWidth :0
},

www.it-ebooks.info

http://www.it-ebooks.info/


172 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

Figure 7-3: The app’s login view on iOS.

You can see the additional class attributes that are set on some of the fields; this is to provide 
a basic level of styling and layout to the elements so you can see the functionality in action.

You see the consistent use of the ID attribute assigned to the elements because they are 
required for accessing the objects from the application controllers when the user clicks on an 
element or when you need to retrieve a value from a text field or application-level event.

The last section you need to add to the login.xml is for the account creation view; this is 
where you enter the information required to create the user’s account in Appcelerator Cloud 
Services. For this application, you need to provide first and last name and an email address. 
The password must be entered twice for confirmation.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 173

Figure 7-4: The app’s login view on Android.

<View id='createAcctView'>
    <Label id='accountText'></Label>
    <View id="cavContainer" >
        <TextField id="acct_fname" class='tfWrapper' />
        <TextField id="acct_lname" class='tfWrapper' />
        <TextField id="acct_email" class='tfWrapper' />
        <TextField id="acct_password" class='tfWrapper' />
        <TextField id="acct_password_confirmation" 
class='tfWrapper'/>

        <View class="centerHelper">
            <Button id="doCreateAcctBtn" title="Create Account"/>
            <Button id="cancelCreateAcctBtn" title="Cancel" />
        </View>
    </View>
</View>

www.it-ebooks.info

http://www.it-ebooks.info/


174 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

The associated changes to the login.tss file are necessary to lay the screens out properly 
(see Figures 7-5 and 7-6):

// General Styles
'.tfWrapper': {
   top: '6dp',
   width: '260dp',
   height: '40dp',
   border: 1,
   borderColor: 'gray'
},
'.centerHelper': {
   top: '10dp',
   height: Ti.UI.SIZE,
   width: Ti.UI.SIZE,
   layout: 'horizontal'
},
ScrollView: {
   contentHeight: Ti.UI.SIZE,
   contentWidth: Ti.UI.SIZE
},
TextField: {
   autocapitalization: Ti.UI.TEXT_AUTOCAPITALIZATION_NONE,
   borderStyle: Ti.UI.INPUT_BORDERSTYLE_NONE,
   autocorrect: false,
   top: '2dp',
   left: '4dp',
   bottom: '2dp',
   right: '4dp',
   paddingLeft: '4dp',
   backgroundColor: 'white',
  color : 'black',

},

// Default Button Style
"Button" : {
   top: '6dp',
   width: '120dp',
   height: '36dp',
   font:{
      fontSize: '13dp'
   }
},

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 175

'#createAcctView' : {
   visible: false,
   width: Ti.UI.SIZE,
   height: Ti.UI.SIZE,
   top: '90dp',
   layout: 'vertical',
   backgroundColor: 'transparent'
},
'#accountText' :{
   text: "Account Text Goes Here For the App",
   font:{
    fontSize: '24dp',
    fontWeight: 'bold'
   }
},
'#cavContainer' : {
   top: '20dp',
   width: '280dp',
   height: Ti.UI.SIZE,
   layout: 'vertical',
},
'#acct_fname' : {
   hintText: 'first name'
},
'#acct_lname' : {
   hintText: 'last name'
},
'#acct_email' : {
   hintText: 'email address'
},
'#acct_password' : {
   passwordMask: true,
   hintText: 'password'
},
'#acct_password_confirmation' : {
   passwordMask: true,
   hintText: 'password confirmation'
},
'#cancelCreateAcctBtn': {
   left: '10dp'
},

www.it-ebooks.info

http://www.it-ebooks.info/


176 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

'#doCreateAcctBtn': {
   left: '0dp'
}

Figure 7-5: The create account view on iOS.

You have created the structure of the user interface that is used to capture input from the 
user to create an account, log in to an existing account, or log in to an account using your 
Facebook credentials. The next step is to modify the user model created earlier in the book so 
you can perform those functions using Appcelerator Cloud Services API calls. Remember 
that the separation of the user interface from the model enables you to reuse this user model 
that will support all of the mentioned functions in additional Alloy projects you create.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 177

Figure 7-6: The create account view on Android.

Updating the User Model
In order to update the user model to support the account creation, you need to create an ability 
to allow users to login and logout using account credentials and send a forgotten password email 
when the user needs that hint to log in to the application. You will make additional updates later 
in the chapter when integrating with Facebook, but for now this will all be Appcelerator Cloud 
Services integrations. See http://docs.appcelerator.com/titanium/latest/#!/
api/Titanium.Cloud.Users.

The corresponding methods documented at this link will be integrated into the user model 
so you can separate the model’s behavior directly into the object and not have it spread 
through the entire application.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Users
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Users
http://www.it-ebooks.info/


178 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

User Create Account Method
You will go right below the area where the login function is and add the following code to the 
user model for creating a new user account. This function is very similar to the one you will 
find in the official Appcelerator Cloud Services documentation.

createAccount: function(_userInfo, _callback) {
    var cloud = this.config.Cloud;
    var TAP = Ti.App.Properties;

    // bad data so return to caller
    if (!_userInfo) {
        _callback && _callback({
            success : false,
            model : null
        });
    } else {
        cloud.Users.create(_userInfo, function(e) {
            if (e.success) {
                var user = e.users[0];
                TAP.setString("sessionId",e.meta.session_id);
                TAP.setString("user",JSON.stringify(user));
                
                // set this for ACS to track session connected
                cloud.sessionId = e.meta.session_id;

                // callback with newly created user
                _callback && _callback({
                     success: true,
                     model: new model(user)
                });
            } else {
                Ti.API.error(e);
                _callback && _callback({
                     success: false,
                     model: null,
                     error: e
                });
            }
        });
    }
},

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 179

The _userInfo parameter will be a JavaScript hash of the parameters required by 
Appcelerator Cloud Services to create a user. You will extract the values from the user inter-
face elements you created in login.xml view and create the object in the controller method 
you will create soon. The _callback parameter is the same as the login function; it is the 
method called after the Appcelerator Cloud Services method is completed.

User Logout Method
Logging out the user will disconnect the session with Appcelerator Cloud Services and will 
keep the user from making API calls that require authentication. You will extend the user 
object once again to make the Appcelerator Cloud Services call exactly as specified in the 
official documentation.

logout: function(_callback) {
    var cloud = this.config.Cloud;
    var TAP = Ti.App.Properties;

    cloud.Users.logout(function(e) {
        if (e.success) {
            var user = e.users[0];
            TAP.removeProperty("sessionId");
            TAP.removeProperty("user");
                
            // callback clearing out the user model
            _callback && _callback({
                 success: true,
                 model: null
            });
        } else {
            Ti.API.error(e);
            _callback && _callback({
                 success: false,
                 model: null,
                 error: e
            });
        }
  });
}

www.it-ebooks.info

http://www.it-ebooks.info/


180 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

Additional User Management Methods
You need a few helper methods to manage the user’s session. In Appcelerator Cloud Services, 
the user’s session is maintained for a predetermined amount of time so you don’t have to 
always log in the user. If you noticed in the previous code that on account creation and user 
login, you save the session ID from Appcelerator Cloud Services. You can later retrieve the 
session by calling this method authenticated, which you can add to the user model with 
the following code.

authenticated : function() {
    var cloud = this.config.Cloud;
    var TAP = Ti.App.Properties;

    if (TAP.hasProperty("sessionId")) {
        Ti.API.info("SESSION ID " + TAP.getString("sessionId"));
        cloud.sessionId = TAP.getString("sessionId");
        return true;
    }
    return false;
},

The authenticated function will reset the user session appropriately in order for the applica-
tion to function properly, but updating the user upon restoring the session will ensure that 
any updates to the user model are reflected in the application. Adding the following code will 
call the Appcelerator Cloud Services method to get the user information for the account 
associated with the current session. Like you did in the previous sections, add this code to 
the user model to extend its functionality so it can retrieve the user model from the cloud.

showMe: function(_callback) {
    var cloud = this.config.Cloud;
    var TAP = Ti.App.Properties;
    cloud.Users.showMe(function(e) {
        if (e.success) {
            var user = e.users[0];
            TAP.setString("sessionId", e.meta.session_id);
            TAP.setString("user", JSON.stringify(user));
            _callback && _callback({
                success: true,
                model: new model(user)
            });
        } else {
            Ti.API.error(e);

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 181

            TAP.removeProperty("sessionId");
            TAP.removeProperty("user");

            _callback && _callback({
                success: false,
                model: null,
                error: e
            });
        }
    });
}

You set up the application variables in the successful function of showMe the same way you 
respond to success of a user login method call.

Updating the Index Controller
The index controller is the starting point for the application. This is where you want to con-
firm users’ statuses and direct them to the proper controller if they are logged in or not. You 
will first update the index.js controller and then you will set up the login.js controller, 
which will do most of the heavy lifting in regard to the user status in the application.

Set Up the Basics in the Index Controller
You need to check if the user in logged into the application or has a session saved for the 
application. You will use the authenticated method created in the user model. You can begin 
making the changes to the index model by creating a user model and checking to see if there 
is an existing method.

Replace the existing function to log the user in with the following code in index.js:

if (user.authenticated() === true) {
    $.userLoggedInAction();
} else {
    $.userNotLoggedInAction();
}

You can see the methods are named such that what you are doing is apparent to the reader. 
If the application has an existing session, then call the userLoggedInAction method; oth-
erwise, call the userNotLoggedInAction. From this section, you know what you need to 

www.it-ebooks.info

http://www.it-ebooks.info/


182 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

do in the userLoggedInAction—you need to get the user object since you only have con-
firmed that there is an active session. The bulk of the code userLoggedInAction is for 
getting the user associated with the session and setting up the app to initialize itself. You use 
the method showMe, which is a new function added to the user model when it was extended, 
add the following function to the index.js controller file:

$.userLoggedInAction = function() {
    user.showMe(function(_response) {
        if (_response.success === true) {
            indexController.loginSuccessAction(_response);
        } else {
            alert("Application Error\n " +_response.error.message);
            Ti.API.error(JSON.stringify(_response.error, null, 2));

            // go ahead and do the login
            $.userNotLoggedInAction();
        }
    });    
};

The userLoggedInAction mentions a function you have not seen yet, loginSuccessâ•‰
Action it includes everything that must be done to set the application up after the user has 
been successfully validated. You will call this method after you validate the session of the 
current user, when creating a new account, and when asking the user to enter a username 
and password for a valid ACS user account.

$.loginSuccessAction = function(_options) {

    Ti.API.info('logged in user information');
    Ti.API.info(JSON.stringify(_options.model, null, 2));

    // open the main screen
    $.tabGroup.open();
    
    // set tabGroup to initial tab, in case this is coming from
    // a previously logged in state
    $.tabGroup.setActiveTab(0);

    // pre-populate the feed with recent photos
    $.feedController.initialize();

    // get the current user
    Alloy.Globals.currentUser = _options.model;

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 183

    // set the parent controller for all of the tabs, give us
    // access to the global tab group and misc functionality
    $.feedController.parentController = $;
    $.friendsController.parentController = $;
    $.settingsController.parentController = $;

    // do any necessary cleanup in login controller
    $.loginController && $.loginController.close();
};

This function requires the callback object with success set to true and a user model 
specified.

UserNotLoggedInAction is called when the application does not detect a session saved 
on the device. Since there is no session, you provide the user with options as to what to do 
next. The functionality of the login process and the create account process is encapsulated in 
the login controller.

You will first see if there has already been a login controller loaded into memory, if not, you 
will create the controller, pass it the required parameters for initialization, and save the 
object. If the login controller exists, you will open the controller to provide the user with the 
options for starting the application.

Later in the application you will create a settings page for the users to view information 
about their account and to log out of the application. After the logout process is complete, 
the application will also call userNotLoggedInAction to reset the user interface for log-
ging in or creating a new account.

$.userNotLoggedInAction = function() {

    // open the login controller to login the user
    if (!$.loginController) {
        var loginController = Alloy.createController("login", {
            parentController : $,
            reset : true
        });

        // save controller so we know not to create one again
        $.loginController = loginController;
    }

    // open the window
    $.loginController.open(true);

};

www.it-ebooks.info

http://www.it-ebooks.info/


184 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

Creating the Login Controller
In the controller, you will begin by creating the event handlers for the click events on the but-
tons in the view. The view was constructed such that to perform specific actions, you will 
hide and show containers for logging in and for creating accounts. The buttons and the asso-
ciated event handlers are named to reflect the appropriate actions.

Add the following code to the login.js controller file:

$.showLoginBtn.addEventListener('click', showLoginBtnClicked);
$.showCreateAccountBtn.addEventListener('click', 
                                      showCreateAccountBtnClicked);
$.cancelCreateAcctBtn.addEventListener('click', 
                                        cancelActionButtonClicked);
$.cancelLoginBtn.addEventListener('click', 
                                        cancelActionButtonClicked);

The next set of handlers respond to the button clicks to perform either the login action or 
the create account action.

$.doLoginBtn.addEventListener('click', doLoginBtnClicked);
$.doCreateAcctBtn.addEventListener('click', 
                                       doCreateAcctBtnClicked);

The showLoginAction and showCreateAccountAction functions are structured the 
same; they basically hide and show the appropriate containers, which then provides the user 
with the appropriate user interface elements for the specific action. In a more advanced, pro-
fessional application you might include animation effects of sliding in or fading in and out 
elements, but they are beyond the scope of this book.

function showLoginBtnClicked() {
    $.createAcctView.hide();
    $.homeView.hide();
    $.loginView.show();
};

You are showing the login container and then hiding everything else. In the case of the create 
account, you do the same except use the createAccount container.

function showCreateAccountBtnClicked() {
    $.createAcctView.show();
    $.homeView.hide();
    $.loginView.hide();
};

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 185

The last event handler you will add at this time is in response to a click on the Cancel button. 
Canceling either the create action or the login action should return the users to the initial 
login controller state.

function cancelActionButtonClicked() {
    $.createAcctView.hide();
    $.loginView.hide();

    // set the global login state to false
    Alloy.Globals.loggedIn = false;

    // display only the home state view
    $.homeView.show();
}

Logging in the User
When you log in the user, you will be using the user model created previously in the chapter 
and calling the login method you added to the object when extending it. If you recall, the 
method required the username, password, and a callback method. The user interface you cre-
ated in the login.xml view file will prompt the user for the information, which you will 
then pass to the login method when the user clicks the login button.

Clicking the login button will execute the login button click handler and execute the follow-
ing function:

function doLoginBtnClicked() {

    // create instance of the user model
    var user = Alloy.createModel('User');

    // call the extended model's function
    user.login($.email.value, $.password.value, function(_resp) {
        if (_resp.success === true) {

            // Do stuff after successful login.
            Alloy.Globals.loggedIn = true;
            Alloy.Globals.CURRENT_USER = _resp.model;

            $.parentController.loginSuccessAction(_resp);

        } else {

www.it-ebooks.info

http://www.it-ebooks.info/


186 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

            // Show the error message.
            alert("loginFailed", _response.error.message);

            Alloy.Globals.CURRENT_USER = null;
            Alloy.Globals.loggedIn = false;
        }
    });
};

The function is a pretty straightforward use of the login method on the extended user model. 
You will get the username and password from the interface by accessing the value property on 
the two text fields. When the call is completed, you will have a user model for the logged-in user. 
There are two global variables created for tracking the user login state and the current user.

You need to set the information on the parent controller so you can execute the login success 
function. Add this code to the top of the login.js controller file:

$.parentController = args.parentController;

Creating the User Account
Creating the account is very similar to logging in because you will once again use the value 
property on the text fields to get the required parameters for the user model. You will pass in 
the username, first name, last name, email, and password with confirmation. Once the 
account is created successfully, you will perform the same actions as when you have a suc-
cessful login. Since the actions are similar, you can do a slight refactoring of the code.

function userActionResponseHandler(_resp) {
    if (_resp.success === true) {

        // Do stuff after successful login.
        Alloy.Globals.loggedIn = true;
        Alloy.Globals.CURRENT_USER = _resp.model;

        $.parentController.loginSuccessAction(_resp);

    } else {
        // Show the error message and let the user try again.
       alert("loginFailed", _resp.error.message);

        Alloy.Globals.CURRENT_USER = null;
        Alloy.Globals.loggedIn = false;
    }
};

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 187

You can remove the callback code from the login function and create a function of its own. 
Now the createAccount and the login functions are very clean and simple. They get code 
from the user interface, make a call to the user module, and then pass the response to be 
handled by the userActionResponseHandler:

function doLoginBtnClicked() {

    var user = Alloy.createModel('User');

    user.login($.email.value, $.password.value, 
                                        userActionResponseHandler);
};

Here is a simple, refactored create account function:

function doCreateAcctBtnClicked() {
    if ($.acct_password.value !== 
                             $.acct_password_confirmation.value) {
        alert("Please re-enter information");
        return;
    }

    var params = {
        first_name : $.acct_fname.value,
        last_name : $.acct_lname.value,
        username : $.acct_email.value,
        email : $.acct_email.value,
        password : $.acct_password.value,
        password_confirmation : $.acct_password_confirmation.value,
    };

    var user = Alloy.createModel('User');

    user.createAccount(params, userActionResponseHandler);
};

Now you need to add some code to initialize the controller when the user needs to log in or 
create an account. This is done with the open function, which you add to the login.js 
controller.

www.it-ebooks.info

http://www.it-ebooks.info/


188 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

$.open = function(_reset) {
  _reset && cancelActionButtonClicked();
  $.index.open();
};

When the login action or create account action is completed, you will need to clean up the 
login controller. The close function is added for that purpose:

$.close = function() {
  $.index.close();
};

You can run the code now to see how the interface looks and create a sample account if you 
like. The screens you see should more or less match the figures shown in the previous sec-
tions of this chapter.

Now the code is set up for you to create an account using your email address and a password, 
but since you may also want to integrate social media into the application, Facebook integra-
tion is a great idea. Many people utilize Facebook and feel comfortable logging into applica-
tions with those credentials. Appcelerator Cloud Services has made it easy to integrate into 
your application along with the Appcelerator Facebook module.

Using Facebook for Account Creation
You can find specific details on setting up your app to work with Facebook on the Appcelerator 
Developer’s website. The information provided in the book assumes you have followed the 
directions and configured your application properly with Facebook. See http://docs.
appcelerator.com/titanium/latest/#!/api/Modules.Facebook.

Setting Up an Application to Use the Facebook Module
You will add the Facebook setup code to the alloy.js file. You can add the Facebook object 
to the Alloy.Globals namespace to access it throughout the application.

// Using FB module in the latest release of Appcelerator
Alloy.Globals.FB = require('facebook');

Another practice you might find helpful is to set the Facebook appid as a property in your 
tiapp.xml file:

<property name="ti.facebook.appid">FACEBOOK_APP_ID</property>

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Modules.Facebook
http://docs.appcelerator.com/titanium/latest/#!/api/Modules.Facebook
http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 189

Facebook Button in the login.xml File
The Facebook button you created in the login.xml view will trigger the login process for 
the application to integrate with Facebook for logging into your application or to launch a 
web view for logging into your application. You need to get the Facebook Access Token, 
which is a property returned after a successful login. This property must be provided to 
Appcelerator Cloud Services for associating the Appcelerator Cloud Services user account 
with the specified Facebook credentials.

Facebook Method in the User Model
In the user model, you will extend the object once again to make a call to the Appcelerator 
Cloud Services method SocialIntegrations.externalAccountLogin, using the 
Facebook Access Token to connect the account to Appcelerator Cloud Services. The success-
ful execution of this call will return a user account object the same way the login method and 
the create account method do.

updateFacebookLoginStatus : function(_accessToken, _opts) {
    var cloud = this.config.Cloud;
    var TAP = Ti.App.Properties;

    // if not logged into facebook, then exit function
    if (Alloy.Globals.FB.loggedIn == false) {
        _opts.error && _opts.error({
            success : false,
            model : null,
            error : "Not Logged into Facebook"
        });
        alert('Please Log Into Facebook first');
        return;
    }

    // we have Facebook  access token so we are good
    cloud.SocialIntegrations.externalAccountLogin({
        type : "facebook",
        token : _accessToken
    }, function(e) {
        if (e.success) {
            var user = e.users[0];
            TAP.setString("sessionId", e.meta.session_id);
            TAP.setString("user", JSON.stringify(user));

www.it-ebooks.info

http://www.it-ebooks.info/


190 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

            // save how we logged in
            TAP.setString("loginType", "FACEBOOK");

            _opts.success && _opts.success({
                success : true,
                model : new model(user),
                error : null
            });
        } else {
            Ti.API.error(e);
            _opts.error && _opts.error({
                success : false,
                model : null,
                error : e
            });
        }
    });
}

This function will return a user object just like the login and create account functions. The differ-
ence is that there will not be any of the appropriate fields associated with the user object that you 
get when you create an account through the create account form. Remember you did not enter an 
email address, a first name, or a last name. You will need to handle that in the login controller.

Facebook Handler in Login Controller
You need to add the event listener to the login.js controller file:

$.showLoginFBBtn.addEventListener('click', doFacebookLoginAction);

The doFacebookLoginAction function has to do several things:

■	 It must log in to Facebook and get an access token for Appcelerator Cloud Services to use.

■	 It must also create a user object and call an extended method to create the ACS user 
account linked to the Facebook account.

■	 Finally, it must update the ACS user account with the user information from Facebook; 
email, first name, and last name.

You can start off with some of the supporting functions that will help the main login 
action; you need an event handler for the successful response from logging in to Facebook. 
This  function will clean up the event listener so there is no memory leak and it will call 
doFacebookLoginAction again with the appropriate Facebook credentials and a logged-
in Facebook user’s access token. See Figure 7-7.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 191

function faceBookLoginEventHandler(_event) {

    Alloy.Globals.FB.removeEventListener('login', 
                                       faceBookLoginEventHandler);

    if (_event.success) {
        doFacebookLoginAction(_event.data);
    } else if (_event.error) {
       alert(_event.error);
    } else {
        _event.cancelled && alert("User Canceled");
    }
};

Figure 7-7: The Facebook login UI should be consistent on iOS and Android.

www.it-ebooks.info

http://www.it-ebooks.info/


192 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

When you’re testing, you might see the screen in Figure 7-8, which indicates that you have 
already authenticated Facebook with this application.

Figure 7-8: The Facebook already authorized UI should also be consistent on iOS and Android.

In the doFacebookLoginAction, there are two potential error scenarios—one when the 
user attempts the initial call to ACS to log in the user and the second when the user model is 
to be updated with the additional account information. Instead of duplicating the error func-
tionality, you can create a function.

function faceBookLoginErrorHandler(_user, _error) {
    // Show the error message somewhere and let the user try again.
    alert("Error: " + _error.code + " " + _error.message);

    Alloy.Globals.loggedIn = false;
    Alloy.Globals.CURRENT_USER = null;
};

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 193

Now that the supporting functions are in place, you can implement the primary function. 
This function supports two states—logged in to Facebook and not logged in. The following 
code shows the not logged in state. When in this state, you will direct the user through the 
path of authenticating with Facebook through the Appcelerator Facebook module and you 
will use the faceBookLoginEventHandler method to take the appropriate action based 
on the user’s interaction with the Facebook module.

Add this code to the login.js controller to a new function doFacebookLoginAction:

function doFacebookLoginAction(_options) {
   var FB = Alloy.Globals.FB;

   if (FB.loggedIn === false) {

      /// Enabling single sign on using FB
      FB.forceDialogAuth = false;

      // get the app id
      FB.appid = Ti.App.Properties.getString("ti.facebook.appid");

      // set permissions
      FB.permissions = ["read_stream"];

      // login handler with callback
      FB.addEventListener("login", faceBookLoginEventHandler);

      // attempt to authorize user
      FB.authorize();

   } else {
  }

If the user has already logged into Facebook, you have the Facebook access token necessary 
for the Appcelerator Cloud Service’s call, so you can call the updateFacebookLoginâ•‰
Status method on the user object to create or authenticate the user.

Add this code to the else condition of the if statement you just added to the 
doFacebookLoginAction:

var user = Alloy.createModel('User');
user.updateFacebookLoginStatus( FB.accessToken,{
    success : function(_resp) {

www.it-ebooks.info

http://www.it-ebooks.info/


194 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

        Ti.App.Properties.setString("loginType", "FACEBOOK");

        Alloy.Globals.loggedIn = true;
        Alloy.Globals.CURRENT_USER = _resp.model;

        // save the newly created Facebook user
        if (!_resp.model.get("username") && _options.email) {
            _resp.model.save({
                "email" : _options.email,
                "username" : _options.username
            }, {
                success : function(_user, _response) {
                    $.parentController.loginSuccessAction(_resp);

                    Alloy.Globals.CURRENT_USER = _user;
                },
                error : faceBookLoginErrorHandler
            });
        } else {
            $.parentController.loginSuccessAction(_resp);
        }
    },
    error : faceBookLoginErrorHandler
});

In the login controller you need to update the user object returned with the email address and 
the first and last name of the user so you have a proper user object. The user account created 
by default from the Appcelerator Cloud Services method will not include those fields. You can 
get those fields as part of the data returned from the successful Facebook login method you 
called to get the access token. You will use those fields and perform an update on the user 
model returned from Appcelerator Cloud Services. The account should then be all ready to go.

Updating User with Facebook Information
When the user account is created through Facebook, the user does not enter her email 
address or username, in fact the user doesn’t enter any information at all. The application is 
built so that on successful Facebook login, you will get the additional information you need 
for the user from the Facebook account information.

The first step is to update the acs.js sync adapter to update the user objects. Add the fol-
lowing code to the sync adapter in the processACSUsers function:

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  7 â•‡ I N T E G R A T I N G  U S E R  A C C O U N T S 195

function processACSUsers(model, method, options) {
  switch (method) {
    case "update":
      var params = model.toJSON();
      Cloud.Users.update(params, function(e) {
        if (e.success) {
          model.meta = e.meta;
          options.success && options.success(e.users[0]);
          model.trigger("fetch");
        } else {
          Ti.API.error("Cloud.Users.update " + e.message);
          options.error && 
                  options.error(e.error && e.message || e);
        }
      });
      break;

  }
}

When you save the user object after successfully logging in with Facebook in the function 
updateFacebookLoginAction you will used the fields from Facebook to update the user 
object. See the following code from the updateFacebookLoginAction:

_resp.model.save({
   "email" : _options.email,
   "username" : _options.username
 }, {
    success : function(_user, _response) { },
    error : faceBookLoginErrorHandler
 });

The _options parameter holds all of the information returned from the successful Facebook 
login.

Check for Facebook Authentication on Startup
The Facebook module provided by Appcelerator provides a method to determine if the user 
has logged in with Facebook and if there is a valid session you can use within the application. 
In this specific scenario, you do not need to check for a specific Facebook login because the 
Appcelerator Cloud Services session is the one that matters.

www.it-ebooks.info

http://www.it-ebooks.info/


196 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M

Logging Out of Facebook
You should call the Facebook logout whenever the user logs out of the application and the 
login type global variable is set to indicate the user logged in with Facebook. You should also 
call the logout method whenever the user attempts to log in using Facebook to ensure you 
are working with a clean slate and have eliminated any lingering Facebook session 
information.

Summary
In this chapter you moved away from using the default test account to allowing users of the 
application to create their own accounts with their own usernames and passwords or by 
leveraging an existing Facebook account.

You have added code for the users to log in with the new account with the custom extensions 
that were written for the user model. You also learned how to extend the functionality of the 
acs.js sync adapter to work with user models.

Finally, you learned how to add the “remember me” functionality, whereby the application 
saves the user and session information. This enables a more seamless user experience 
because, after the user has logged in to the application once, there is no requirement to log in 
again.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 8
Working with Fr iends 
and Fol lowers

APPCELERATOR CLOUD SERVICES comes with a robust set of predefined objects, many 
of which you have used already to build your application. The next one you will use is the 
Friends object. This object allows you to create relationships between users so you can 
create followers just like with Facebook and Twitter. In the application you are building, you 
will allow the users of the application to select users to follow so they can view pictures of all 
of the people they follow. The pictures will automatically be added to the feed.

In this chapter, you will create new models, views, and controllers to support the Friends 
functionality and also update other areas of the application to support the Friends func-
tionality. See http://docs.appcelerator.com/cloud/latest/#!/api/Friends.

Before you get started with friends and followers, you need to create a library to provide the 
activity indicator. This will let users know that there is some sort of network or long activity 
happening and that the application is not locked up. This also gives you an opportunity to 
see how CommonJS libraries can be integrated into your application, potentially repurposing 
old non-Alloy-based code that you believe is still valuable in your development toolset.

Creating the CommonJS Library in Alloy
Go to the folder app/ lib; in that directory, create a new file called progressWindow.js.

In this file, you can write plain old JavaScript code with plain old objects, the way you did 
before Alloy came along. You will create a set of functions to hide or show a progress window 
and export those functions so this library can be used throughout your application.

www.it-ebooks.info

http://docs.appcelerator.com/cloud/latest/#!/api/Friends
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M198

In this example, you will use the pre-Alloy window and user interface creation functions; 
once again, this is to demonstrate the flexibility of Alloy and to show how you can mix the 
old and new together to create your application.

Adding the Code
The variables that are within the scope of this library are created first. You have variables for 
the user interface components and variables to let you know if a progress window is dis-
played or not.

var activityIndicator, showingIndicator, activityIndicatorWindow, 
progressTimeout;

var progressIndicator = null;

Next you will create the two functions, one to show the activity window and one to hide 
the  activity window. This code is very similar to the code provided in the documentation 
on  the Titanium.UI.ActivityIndicator at http://docs.appcelerator.com/
titanium/3.0/#!/api/Titanium.UI.ActivityIndicator.

Here is the code for showing the activityIndicator:

exports.showIndicator = function(_messageString) {
    Ti.API.info('showIndicator: ' + _messageString);

    activityIndicatorWindow = Titanium.UI.createWindow({
        top : 0,
        left : 0,
        width : "100%",
        height : "100%",
        backgroundColor : "#58585A",
        opacity : .7
    });

    activityIndicator = Ti.UI.createActivityIndicator({
        style : OS_IOS ? Ti.UI.iPhone.ActivityIndicatorStyle.DARK : 
Ti.UI.ActivityIndicatorStyle.DARK,

        top : "10dp",
        right : "30dp",
        bottom : "10dp",
        left : "30dp",
        message : _messageString || "Loading, please wait.",
        color : "white",

www.it-ebooks.info

http://docs.appcelerator.com/titanium/3.0/#!/api/Titanium.UI.ActivityIndicator
http://docs.appcelerator.com/titanium/3.0/#!/api/Titanium.UI.ActivityIndicator
http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 199

        font : {
            fontSize : 16,
            fontWeight : "bold"
        },
        style : 0
    });
    activityIndicatorWindow.add(activityIndicator);
    activityIndicatorWindow.open();
    activityIndicator.show();
    showingIndicator = true;

    // safety catch all to ensure the screen eventually clears
    // after 25 seconds
    progressTimeout = setTimeout(function() {
        exports.hideIndicator();
    }, 35000);
};

Here is the code for hiding the activityIndicator:

exports.hideIndicator = function() {

    if (progressTimeout) {
        clearTimeout(progressTimeout);
        progressTimeout = null;
    }

    Ti.API.info('hideIndicator');
    if (!showingIndicator) {
        return;
    }
    activityIndicator.hide();
    
    activityIndicatorWindow.remove(activityIndicator);
    activityIndicatorWindow.close();
    activityIndicatorWindow = null;

    // clean up variables
    showingIndicator = false;
    activityIndicator = null;
};

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M200

Notice the exports reserved word used in the beginning of the two functions; this allows 
the functions to be exported as part of the CommonJS library you have just created. So now 
you need to require the library so that it can be used throughout your application.

You can open the alloy.js file in the root of your application directory. At the top of this 
file, in the comments section, it explains how this file is run before anything else in your 
application and how it is a great place to include globals and global functions. This is what 
you are going to do.

Add the following code to the alloy.js file:

Alloy.Globals.PW = require('progressWindow');

This code will create an instance of the progressWindow library that you can now use 
throughout your application and that you will start to use when querying for friends and fol-
lowers in this chapter.

Adding the Friends User Interface
You created a basic window when you started the application so that you could move through 
the application tabs. Now is the time to add some new functionality to the window.

You will also get to work with some new concepts and a new user interface element called a 
Titanium.UI.ListView in this section. First off the Titanium.UI.ListView. The 
Titanium.UI.ListView provides a better user interface for displaying and managing lists 
of objects in the interface on your mobile application. The Titanium.UI.ListView will 
provide noticeable scrolling speed improvements over the Titanium.UI.TableView on 
iOS and will probably address troublesome bugs you found when implementing complex 
rows on Android.

The other new concept introduced in this chapter is data binding. Data binding allows you to 
create views that will update automatically based on changes in the underlying model or col-
lection that you bind to the view. In this chapter, you will bind the collection of users from 
the friends model to the Titanium.UI.ListView, but it is possible to also bind a single 
model to a view.

The Titanium.UI.ListView is made up of the Titanium.UI.ListView, Titanium.
UI.ItemTemplate, Titanium.UI.ListSection, and Titanium.UI.ListItem, all of 
which can be configured in the view file and the .tss style file with no code required in the 
controller file. The Appcelerator documentation has a thorough overview of the differences 
between the Titanium.UI.ListView and the Titanium.UI.TableView, so I cover 
only the basics required for the application you are building.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 201

The user interface for the friends view is quite simple; it is a window with a list comprised of 
list rows that contain an image from the specific users profile, the user’s name, and a button 
to make the user your friend or to end the friendship. At the top of the window is a 
Titanium.UI.TabbedBar on iOS devices for toggling between the different user lists. On 
Android, you will use the Titanium.UI.Picker control to perform the same function.

Open the file friends.xml in the views folder and add the following code. You will begin 
by laying out the high-level objects; I’ll cover Titanium.UI.ListView specifics later in 
this section.

<Alloy>
    <Tab title="Friends">
        <Window title="Friends" id="friendsWindow">
           <!-- used to toggle between different types of users -->
            <View id="filterContainer">
                <TabbedBar id="filter" platform="ios">
                    <Labels>
                        <Label>Users</Label>
                        <Label>Friends</Label>
                    </Labels>
                </TabbedBar>
                <View id="androidPickerContainer"
                                     platform="android">
                   <Picker id="filter">
                       <PickerColumn id="column1">
                           <PickerRow title="Users"/>
                           <PickerRow title="Friends"/>
                       </PickerColumn>
                   </Picker>
                </View>
            </View>
            <ListView>
                <Templates>
                    <ItemTemplate/>
                </Templates>
                <ListSection>
                    <ListItem />
                </ListSection>
            </ListView>
        </Window>
    </Tab>
</Alloy>

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M202

The first thing you might notice at the top is the creation of the Titanium.UI.TabbedBar 
and the Titanium.UI.Picker controls. Since you are using the platform attribute in the 
XML file, you can control which user interface elements get compiled into the build based on 
the platform. This allows you to create the cross-platform application, yet provide platform-
specific user interface elements, all from the same code base. Both of these elements respond 
to events that will let you know which item is clicked and is active. You will use this to control 
which group of users is rendered in the Titanium.UI.ListView.

The user interface styling for the Titanium.UI.TabbedBar and the Titanium.
UI.Picker controls are pretty straightforward. You will use the platform-specific attribute 
in the friends.tss file to control the differences in the style elements based on platform. 
There is the style of the Titanium.UI.TabbedBar that’s OS-specific. On Android, the 
dimension of the control and additional non-iOS attributes are required.

The contents of your friends.tss file should look similar to the following in order to 
render the page properly to match the original wireframes.

".container": {
 backgroundColor: "white"
}
"#friendsWindow" : {
    layout: "vertical"
},
"#filterContainer" : {
    top: "5dp",
    height: Ti.UI.SIZE,
    width: "70%"
},
"#androidPickerContainer" : {
    height: Ti.UI.SIZE,
    width: Ti.UI.SIZE,
    backgroundColor : 'gray'
},
"#filter[platform=ios]" : {
    style: Ti.UI.iPhone.SystemButtonStyle.BAR,
    height: 30,
    width: "86%"
},
"#filter[platform=android]" : {
    height: "38dp",
    width: "70%",
    selectionIndicator: true
},

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 203

To round out the Titanium.UI.Picker and Titanium.UI.TabbedBar functionality, you 
can open up the friends.js controller file and start to enter the code for handling events on 
the control for selecting the type of users in the list. Since the ListView and the models are 
not created yet, you will create stub methods to fill in later with the actual functionality.

The first thing after the basic setup code is to include the code for handling the events:

// EVENT LISTENERS
// on android, we need the change event not the click event
$.filter.addEventListener(OS_ANDROID ? 'change' : 'click', 
filterClicked);

$.friendsWindow.addEventListener("androidback", 
androidBackEventHandler);

/**
 * called when the back button is clicked, we will close the 
 * window and stop event from bubbling up and closing the app
 *
 * @param {Object} _event
 */
function androidBackEventHandler(_event) {
    _event.cancelBubble = true;
    _event.bubbles = false;
    Ti.API.debug("androidback event");
    $.friendsWindow.removeEventListener("androidback", 
androidBackEventHandler);

    $.friendsWindow.close();
}

The interesting code here is once again changes added to support both platforms from the 
same code base. When using the Titanium.UI.Picker on Android, when the user selects 
the specific item, a change event is triggered. When the Titanium.UI.TabbedBar is 
changed, the event you want to listen for is the click event. Luckily, both events return the 
information required to take the appropriate action so you only need one function to handle 
the logic for both platforms.

The filterClicked function responds to the event and calls the appropriate functions for 
displaying the users. The _event generated provides the index that you need in a different 
property, index, or rowIndex, depending on the specific platform you are building for; the 
conditional statement at the start of the function handles that for you to keep the rest of the 
code straightforward.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M204

function filterClicked(_event) {
    var itemSelected;
    itemSelected = ! OS_ANDROID ? _event.index : _event.rowIndex;

    // clear the ListView display
    $.section.deleteItemsAt(0, $.section.items.length);

    // call the appropriate function to update the display
    switch (itemSelected) {
        case 0 :
            getAllUsersExceptFriends();
            break;
        case 1 :
            loadFriends();
            break;
   }
}

The next step is to return to the friends.xml file to discuss the Titanium.UI.ListView 
element for rendering the list of users.

As stated earlier, there is a thorough explanation of the Titanium.UI.ListView and its 
many options in the Appcelerator documentation. This is a simple example that you will 
probably use multiple times in your application development experience, but please read the 
documentation because there is so much more functionality available in this element.

Titanium.UI.ListView renders a section containing items based on a specific template. 
In this example, the template for all of the list items are the same based on the selected 
picker item. You will configure most of the element’s information in the .xml and .tss files.

First you add an id to the Titanium.UI.ListView element so it can be accessed in the 
controller.

 <ListView id="listView">

Next, you set the Titanium.UI.ItemTemplate; since you can have multiple Titanium.
UI.ItemTemplates, there is a container element in the XML called Titanium.
UI.Templates. You will add two templates to the XML file, one for users you are following 
and one for users you are not following. You can see in the following code that the elements 
look very similar to how you set up the complex Titanium.UI.TableViewRow earlier in 
the book.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 205

<Templates>
  <ItemTemplate name="fullItem" height="40dp" width="Ti.UI.FILL">
     <View id="userView">
        <ImageView bindId="userAvatar" id="userAvatar"/>
        <Label bindId="userName" id="userName"/>
     </View>
     <Button title="Follow" class="actionBtn"
                                       onClick="followBtnClicked"/>
  </ItemTemplate>
  <ItemTemplate name="friends" height="40dp" width="Ti.UI.FILL">
     <View id="userView">
        <ImageView bindId="userAvatar" id="userAvatar"/>
        <Label bindId="userName" id="userName"/>
     </View>
     <Button title="UnFollow" class="actionBtn"
                                    onClick="followingBtnClicked"/>
  </ItemTemplate>
</Templates>

A few points to notice here. You are specifying the event handler of the button in the template; 
this is required because there is no access to the specific button element from the controller. 
Later in the chapter you will create the followBtnClicked and followingBtnClicked 
functions in the controller to respond to the button click to follow or un-follow a user.

The Titanium.UI.ListSection is very similar to Titanium.UI.TableViewSection. 
Here in the view.xml file, you specify the Titanium.UI.ListSection with the 
Titanium.UI.ListItem element. The List section requires an ID attribute so it can be 
accessed from the controller; for the Titanium.UI.ListItem, we will leave that blank for 
now since most of the attributes are specific to data-binding.

<ListSection id="section" >
    <ListItem />
</ListSection>

Finishing Up the ListView with Style
The friends.tss file now needs to be updated to properly format the list view to reflect 
the functionality described in the wireframes presented earlier in the book. Open the 
friends.tss file and add the following code.

"#listView" : {
    background : "white",
    separatorColor : '#CCC',

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M206

    width: Ti.UI.FILL,
    height: Ti.UI.FILL
},
"#userAvatar" : {
    width: "36dp",
    height:  "36dp",
},
"#userName" : {
 left : "8dp",
    width: Ti.UI.SIZE,
    height: Ti.UI.SIZE,
    font: {
        fontSize: '15dp'
    }
},
"#userView" : {
    top : "2dp",
    left : "4dp",
    background : "white",
    width: Ti.UI.FILL,
    height: Ti.UI.FILL,
    layout : "horizontal"
},
".actionBtn[platform=android]" : {
    right : "8dp",
    width: "90dp",
    height: "34dp",
    font: {
        fontSize: '14dp'
    }
}
".actionBtn[platform=ios]" : {
    right : "8dp",
    width: "90dp",
    height: "26dp",
    font: {
        fontSize: '14dp'
    }
}

There are once again some platform-specific sections to account for device difference, but 
there should be nothing new here.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 207

You can add the two functions to respond to the button clicks as placeholders so the code can 
compile and you can verify the user interface is correct. Add the following code to the 
friends.js controller file.

function followBtnClicked(_event) {}
function followingBtnClicked(_event) {}

Now you can run the application and click on the Friends tab. The application should look 
like Figure 8-1 or 8-2, depending on your platform.

Figure 8-1: Basic user list view that is used for displaying users and friends on iOS.

Before you can go any further with the user interface, you need to have some data to render. Next 
you will start to create the models necessary for the friends functionality and then you will begin 
to fill in the stub methods created earlier when working with the friends.js controller.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M208

Figure 8-2: Basic user list view that is used for displaying users and friends on Android.

After the models and the associated methods are in place, you will return to the friends.
xml view file to bind the data to the view by making a few more edits.

Introduction to Appcelerator Cloud  
Services Friends Object
The basic model template is similar to how the model file has been created in the past. You 
just need to set the adapter type to acs and the collection_name to friends.

friend.js

exports.definition = {

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 209

    config : {
       "adapter" : {
            "type" : "acs",
            "collection_name" : "friends",
        }
    },

    extendModel : function(Model) {
        _.extend(Model.prototype, {});
        // end extend
        return Model;
    },

    extendCollection : function(Collection) {
        _.extend(Collection.prototype, {});
        // end extend
        return Collection;
    }
};

Modifying the ACS Sync Adapter  
to Support User Queries
The application needs to display a list of all of the users in the application so that the user can 
select other users they would like to follow. Following other users allows you to see other 
photos from users.

In this chapter, you add the functionality to get the list of users. To support querying users, 
you will add code to the switch statement to support the read functionality. This approach 
is very similar to how the other Appcelerator Cloud Services objects were added to the 
adapter. See http://docs.appcelerator.com/cloud/latest/#!/api/Users.

To query the list of users, add the following code to the switch statement in processAC 
SUsers in the acs.js sync adapter:

case "read":

    opts.data = opts.data || {};
    _model.id && (opts.data.user_id = _model.id);

    var readMethod = _model.id ? Cloud.Users.show :  
Cloud.Users.query;

www.it-ebooks.info

http://docs.appcelerator.com/cloud/latest/#!/api/Users.
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M210

    readMethod((opts.data || {}), function(e) {
        if (e.success) {
            _model.meta = e.meta;
            if (e.users.length === 1) {
                opts.success(e.users[0]);
            } else {
                opts.success(e.users);
            }
            _model.trigger("fetch");
            return;
        } else {
            Ti.API.error("Cloud.Users.query " + e.message);
            ;
            opts.error(e.error && e.message || e);
        }
    });

    break;

The code follows the function provided by the Appcelerator Cloud Services documentation, 
but you are combining querying for a list of users with querying or showing one user. The 
trick is model_id. If there is a model_id present, then you will call the function Cloud.
Users.show because you want a specific user. If there is no ID specified, then you are look-
ing for a list of users and then will call Cloud.Users.query.

This one switch condition can return a single user as a model object or multiple users as a 
collection of user model objects.

Modifying the ACS Sync Adapter to Support Friends
To wire up the friends support in the sync adapter, you will follow the same pattern as when 
adding support for the other ACS objects. First, you create the stub function for the specific 
object type and then provide a handler for create, read, update, and delete.

function processACSFriends(model, method, opts) {
    switch (method) {
        case "create" :
           break;
        case "read" :
           break;
        case "delete" :
           break;
    }
} 

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 211

Next you need to ensure the adapter branches when object_name equals friends; see the 
following updated code:

function Sync(method, model, opts) {
    var object_name = model.config.adapter.collection_name;

    if (object_name === "photos") {
        processACSPhotos(model, method, opts);
    } else if (object_name === "users") {
        processACSUsers(model, method, opts);
    } else if (object_name === "reviews") {
        processACSComments(model, method, opts);
    } else if (object_name === "friends") {
        processACSFriends(model, method, opts);
    }
}

Now you need to start to fill out the functions for each of the CRUD options in the process 
ACSFriends function. This approach is very similar to how the other Appcelerator Cloud 
Services objects were added to the adapter. See http://docs.appcelerator.com/
cloud/latest/#!/api/Friends.

The corresponding methods documented at this link will be integrated into the adapter so 
you can separate the model’s behavior indirectly into the object and not have it spread 
through the entire application.

Creating the Friend Relationship
This code is straight from the documentation sample, but modified to support the Backbone 
model it will need to return. The code follows the Backbone.js pattern of determining param-
eters by looking on the provided option parameter of the model. In the case of the create/add 
method, the required parameters are passed in the model provided. Since the Appcelerator 
Cloud Service method does not return an object, but only success or failure, you will just 
return an empty object upon success.

case "create":
    var params = model.toJSON();

    Cloud.Friends.add(params, function(e) {
        if (e.success) {
            model.meta = e.meta;
            opts.success && opts.success({});

www.it-ebooks.info

http://docs.appcelerator.com/cloud/latest/#!/api/Friends
http://docs.appcelerator.com/cloud/latest/#!/api/Friends
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M212

            model.trigger("fetch");
            return;
        }
        Ti.API.error(e);
        opts.error && opts.error(e.error && e.message || e);
        model.trigger("error");
    });
    break;

Finding Friend Relationships Based on a User’s ID
This code is straight from the documentation sample but modified to support the Backbone 
model it will need to return. The function determines its parameters by looking on the pro-
vided options parameter of the function. This code is implemented to look for the userid 
in either the options.data or as part of the model, specifically the model.id property. 
This function will return all friends of the selected user as a collection of user objects you cre-
ated in the last chapter.

case "read":
    opts.data = opts.data || {};
    _model.id && (opts.data.user_id = _model.id);

    Cloud.Friends.search((opts.data || {}), function(e) {
        if (e.success) {
            _model.meta = e.meta;
            opts.success(e.users);
            _model.trigger("fetch");
            return;
        } else {
            Ti.API.error("Cloud.Friends.query " + e.message);
            opts.error(e.error && e.message || e);
            _model.trigger("error");
        }
    });
          break;

Removing Friend Relationships from a User
This function can take multiple user IDs that will be removed from the relationship with the 
current user. The function determines its parameters by looking on the provided options 
parameter of the function. This code is implemented to look for the user_ids in the 
options.data property. This function does not return a model, but only a success or failure.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 213

case "delete":
    Cloud.Friends.remove({
        user_ids : opts.data.user_ids.join(",")
    }, function(e) {
        Ti.API.debug(JSON.stringify(e));
        if (e.success) {
            _model.meta = e.meta;
            opts.success && opts.success({});
            _model.trigger("fetch");
            return;
        }
        Ti.API.error("Cloud.Friends.remove: " + e);
        opts.error && opts.error(e.error && e.message || e);
        _model.trigger("error");
    });
    break;

Extending the User Model to Support  
User-Specific Friends Functionality
Since the friends are associated in a relationship with a specific user, in this application you 
will be extending the user object to provide the necessary function for utilizing the friends 
objects you just created. This is about creating an application structure with objects that inter-
act like real world objects, meaning you will ask the user to provide a list of her friends, you 
will ask a user to follow another user, and finally you will ask a user to un-follow another user.

You will create the corresponding function by extending the user object and use the Friend 
object you just created. The process of extending a Alloy model is covered in previous chap-
ters, so the essential code is provided here only.

Since the getFollowers function will also be leveraged to support getFriends, you will 
set the parameters such that the results are either followers or friends. To get the Appcelerator 
Cloud Services function to return friends, you set the followers parameter to false.

Get the current user’s list of followers as a Friend collection; pass the current user’s ID, 
this.id, in as the parameter for user_id.

getFollowers : function(_callback, _followers) {

    var followers = Alloy.createCollection("Friend");
    followers.fetch({
        data : {
            per_page : 100,

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M214

            q : " ",
            user_id : this.id,
            followers : _followers || "true"
        },
        success : function(_collection, _response) {
            _callback && _callback({
                success : true,
                collection : _collection
            });
        },
        error : function(_model, _response) { debugger;
            _callback && _callback({
                success : false,
                collection : {},
                error : _response
            });
        }
    });

},

To get the user’s friends, you just call the same function with the parameter set to false. You 
can add the following function as a helper and to create some self-documenting code.

getFriends : function(_callback) {
    this.getFollowers(_callback, false );
}

To follow a user and become the user’s friend, the Appcelerator Cloud Services method 
requires the ID of the new friend, user_ids, which is provided as a model property along 
with the approval_required flag set to false. Additional information on the approval_
required parameter can be found in the Appcelerator Cloud Services documentation.

followUser : function(_userid, _callback) {
    // create properties for friend
    var friendItem = {
        "user_ids" : _userid,
        "approval_required" : "false"
    };

    var friendItemModel = Alloy.createModel('Friend');
    friendItemModel.save(friendItem, {

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 215

        success : function(_model, _response) {
            _callback({
                success : true
            });
        },

        error : function(_model, _response) {
            _callback({
                success : false
            });
        }
    });
},

To un-follow a user and end the friend relationship, the Appcelerator Cloud Services method 
requires the ID of the friend to be removed, user_ids, which is provided as an options.
data property.

unFollowUser : function(_userid, _callback) {

    var friendItemModel = Alloy.createModel('Friend');

    // MUST set the id so Backbone will trigger the delete event
    friendItemModel.id = _userid;

    // destroy/delete the model
    friendItemModel.destroy({
        data : {
            "user_ids" : [_userid]
        },

        success : function(_model, _response) {
            _callback({
                success : true
            });
        },
        error : function(_model, _response) {
            _callback({
                success : false
            });
        }
    });
},

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M216

Now that the models are all created and you can create friend relationships and you have 
extended the user object so the code flows in a more natural manner, you can now start the 
final step, which is to bind the data to the user interface.

Integrating ListView Data-Binding  
with Friends Collections
With the features of Backbone and Alloy, you can easily keep the user interface synchronized 
with the data models through binding the data to the view. Earlier in the chapter, you created 
the basic ListView, which you will now bind to a list of users for the application users to 
select as someone to follow, a list of followers for the user to see, and a list of followers for 
the user to select and un-follow.

Revisiting the friends.xml File
Since you are going to bind this view to a collection of users, you need to create a local 
instance of the collection; in this example you create that in the friends.xml by adding 
this line of code right after the Alloy opening tag:

<Collection src="user" instance="true" id="friendUserCollection">

Now when the application instantiates this view/controller combination, a user collection 
named friendUserCollection will be created automatically. This collection must be cre-
ated immediately since in the current implementation of Alloy; the view is rendered before 
any user functions are executed and the bound collection for the view must exist.

The next change is to bind that collection to the Titanium.UI.ListSection; remember 
the section will be displayed in the Titanium.UI.ListView so the contents will be visible 
when the view is rendered.

Finally, you need to bind the model objects from the friendUserCollection to the spe-
cific Titanium.UI.ListSection in the Titanium.UI.ListView; basically each model 
in the collection will be represented as an individual Titanium.UI.ListItem.

Here is the complete code for the updated ListSection:

<ListSection id="section" dataCollection="$.friendUserCollection"   
                          dataTransform="doTransform"
                          dataFilter="doFilter">
    <ListItem template="{template}" 
                 userName:text="{title}"

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 217

                 userAvatar:image="{image}" 
                 modelId="{modelId}"/>
</ListSection>

The dataCollection attribute is the name of the variable, $.friendUserCollection, 
which holds the collection to be rendered in the view.

The dataTransform and dataFilter functions are added to the controller to modify the 
model object that is passed to the Titanium.UI.ListItem as a JavaScript object and the 
dataFilter is used to filter the collection of objects that is rendered in the view. These are 
optional functions; however, you will be utilizing both functions in the updated friends.
js controller code.

The Titanium.UI.ListItem has the properties that actually bind the model’s attributes 
to the list to be rendered. Notice that the attribute names match the bindId property values 
that were specified in the templates you created in the first section on working with the 
friends.xml view. The attributes in the curly braces map to the model attributes that are 
provided by the collection, which is in turn bound to the view.

Integrating ListView Data-Binding  
with the Friends Controller
Back to the controller to fill in the stubs you created earlier in the chapter, there were three 
primary views—All Users, All Friends, and All Followers. This section begins with All Users.

When this view is first displayed, it will show all of the users in the system who you are not 
following. So the first step is to get the list of users you are following and then get all of the 
users. The initialization code for the friends.js controller is listed next, and it’s called 
when the view gets focus.

function initialize() {
    $.filter.index = 0;

    Alloy.Globals. opts.showIndicator("Loading...");

    updateFollowersFriendsLists(function() {
        Alloy.Globals.PW.hideIndicator();

        // get the users
        $.collectionType = "fullItem";

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M218

        getAllUsersExceptFriends();

    });

};

You need to fetch the content when the view gains focus not on open, so you create this 
event listener for the controller. You also specify the $.collectionType variable so the 
Titanium.UI.ListView knows which template to use when rendering the list.

$.getView().addEventListener("focus", function() {
    !$.initialized  && initialize();
    $.initialized = true
});

Displaying All Users
The method to support finding all users in called getAllUsersExceptFriends, which 
will do exactly what it says, but it requires some help. We need a list of the user IDs of the 
current user’s friends so they can be excluded from the collection; that can be accomplished 
with the function updateFollowersFriendsLists.

updateFollowersFriendsLists gets the list of friends and followers and then using the 
underscore _.pluck method removes just the user IDs and saves them in an location array 
$.followersIdList.

function updateFollowersFriendsLists(_callback) {
    var currentUser = Alloy.Globals.currentUser;

    // get the followers/friends id for the current user
    currentUser.getFollowers(function(_resp) {
        if (_resp.success) {
            $.followersIdList = 
                     _.pluck(_resp.collection.models, "id");

            // get the friends
            currentUser.getFriends(function(_resp) {
                if (_resp.success) {
                    $.friendsIdList = 
                        _.pluck(_resp.collection.models, "id");
                } else {
                    alert("Error updating friends and followers");
                }

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 219

                _callback();
            });
        } else {
            alert("Error updating friends and followers");
            _callback();
        }

    });
}

Now you have the list of IDs to exclude from the all users list, since this is just the list of people 
you are not already following, you need to construct a query for the friendUserCollection 
collection to make this happen. Notice the use of the Appcelerator Cloud Services where query 
functionality to exclude the user IDs that match the IDs in the provided array.

function getAllUsersExceptFriends() {
    var where_params = null;

    // which template to use when rendering listView
    $.collectionType = "fullItem";

    Alloy.Globals.PW.showIndicator("Loading Users...");

    // remove all items from the collection
    $.friendUserCollection.reset();

    if ($.friendsIdList.length) {
    // set up where parameters using the $.friendsIdList
    // from the updateFollowersFriendsLists function call
        var where_params = {
            "_id" : {
                "$nin" : $.friendsIdList, // means NOT IN
            },
        };
    }
    

    // set the where params on the query
    $.friendUserCollection.fetch({
        data : {
            per_page : 100,
            order : '-last_name',
            where : where_params && JSON.stringify(where_params),
        },

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M220

        success : function() {
            // user collection is updated into
            // $.friendUserCollection variable
            Alloy.Globals.PW.hideIndicator();
        },
        error : function() {
            Alloy.Globals.PW.hideIndicator();
            alert("Error Loading Users");
        }
    });
}

The last step to get the binding working is to create the doFilter and doTransform func-
tions you specified in the view.xml file. You can start with the doFilter function since it 
is pretty straightforward. You do not want to display yourself or the admin accounts in any 
of the views so filter the collection and extract users with your ID and end user object that 
comes back as an admin.

function doFilter(_collection) {
    return _collection.filter(function(_i) {
        var attrs = _i.attributes;
        return ((_i.id !== Alloy.Globals.currentUser.id) &&
                     (attrs.admin === "false" || !attrs.admin));
    });
};

Next for the dataTransform, you need to return an object with the properties that match 
the values specified in the curly braces from the ListSection in view.xml. So here you 
will transform the data from the original model in the collection into a JavaScript object 
containing the appropriate properties to match the user interface and pass the object, 
Â�modelParams as the return. See Figures 8-3 and 8-4.

function doTransform(model) {

    var displayName, image, user = model.toJSON();

    // get the photo
    if (user.photo && user.photo.urls) {
        image = user.photo.urls.square_75 ||
                user.photo.urls.thumb_100 ||
              user.photo.urls.original ||
              "missing.gif";
    } else {

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 221

        image = "missing.gif";
    }

    // get the display name
    if (user.first_name || user.last_name) {
        displayName = 
            (user.first_name || "") + " " + (user.last_name || "");
    } else {
        displayName = user.email;
    }

    // return the object
    var modelParams = {
        title : displayName,
        image : image,
        modelId : user.id,
        template : $.collectionType
    };

    return modelParams;
};

Displaying the Friends List
This is a straightforward call to the getFriends method added to the extended user model. 
It will return a list of user objects that will be assigned to the $.friendUserCollection 
collection.

This assignment will trigger the data binding to update the Titanium.UI.ListView and 
display the friends. Also notice the assignment of the collectionType that will control 
the template user to display the list items.

function loadFriends(_callback) {
  var user = Alloy.Globals.currentUser;

  Alloy.Globals.PW.showIndicator("Loading Friends...");

  user.getFriends(function(_resp) {
    if (_resp.success) {
      if (_resp.collection.models.length === 0) {
        $.friendUserCollection.reset();
      } else {

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M222

        $.collectionType = "friends";
        $.friendUserCollection.reset(_resp.collection.models);
        $.friendUserCollection.trigger("sync");
      }
    } else {
      alert("Error loading followers");
    }
    Alloy.Globals.PW.hideIndicator();
    _callback && _callback();
  });
}; 

Figure 8-3: The iOS version of the basic user list view that is used for displaying users, friends, 
and followers.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 223

Figure 8-4: The Android version of the basic user list view that is used for displaying users, friends, 
and followers.

Working with User and Friends Lists
When selecting a user from the all users list to add as a friend, you will be following the event 
handler pattern that should be familiar to you by now, with a slight change for list views. At 
the time of the writing of this book, Titanium.UI.ListView must have the event handler 
defined in view.xml and not in the controller. So if you remember from earlier in this chap-
ter, you added the onClick attribute to the button in the Titanium.UI.ItemTemplate 
in the Titanium.UI.ListView.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M224

The following code responds to the click on the button and calls the function followUser that 
was added to the extended user model to create a friend relationship between two users. The 
function will add the selected user to the current user’s friend’s list. When the call is completed 
successfully you then call the function updateFollowersFriendsLists to update the cur-
rent list of friends and followers so you have the proper list of user IDs to exclude from the lists. 
Remember you do not want to display users in the list who are already friends. After the function 
completes, you then need to update $.friendUserCollection by Â�calling getAllUsers 
ExceptFriends. Since you used data binding, as soon as the $.friendUserCollection is 
updated, the application will respond to the updated event and update the user interface for you.

Replace the method stub for followBtnClicked in friends.js controller file with this code:

function followBtnClicked(_event) {

  Alloy.Globals.PW.showIndicator("Updating User");

  var currentUser = Alloy.Globals.currentUser;
  var selUser = getModelFromSelectedRow(_event);

  currentUser.followUser(selUser.model.id, function(_resp) {
    if (_resp.success) {

      // update the lists IF it was successful
      updateFollowersFriendsLists (function() {

        // update the UI to reflect the change
        getAllUsersExceptFriends(function() {
          Alloy.Globals.PW.hideIndicator();
          alert("You are now following " + selUser.displayName);
        });
      });
    } else {
      alert("Error trying to follow " + selUser.displayName);
    }
    Alloy.Globals.PW.hideIndicator();

  });

  _event.cancelBubble = true;
};

The helper function getModelFromSelectedRow used in the previous code encapsulates 
functionality needed to get the model and the specific display name from a list element. Using 

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 225

the model.id specified in the model transformation function and added as an attribute on 
each Titanium.UI.ListItem, you can then do a local query on the collection to get the entire 
model object. The function returns the model and the display name to be displayed in the list.

function getModelFromSelectedRow(_event) {
    var item = _event.section.items[_event.itemIndex];
    var selectedUserId = item.properties.modelId;
    return {
        model : $.friendUserCollection.get(selectedUserId),
        displayName : item.userName.text,
    };
}

Figure 8-5 shows the alert that tells users they are now following a new friend.

Figure 8-5: The Android version of the alert.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M226

Removing a Friend from the Friends List
To remove a user from the current user’s friends list, you will use the functions previously 
added to the user object to call the underlying methods on the friends object. Utilizing the 
helper method to get the model from the row that was clicked, you then pass that ID to 
the unfollowUser function. If the function executes successfully, you will need to update 
the local variable holding the friendsList since that is required for the proper filtering 
of the display and then finally call loadFriends to reset the $.friendUserCollection 
and trigger the data binding to update the view.

function followingBtnClicked(_event) {

  Alloy.Globals.PW.showIndicator("Updating User");

  var currentUser = Alloy.Globals.currentUser;
  var selUser = getModelFromSelectedRow(_event);

  currentUser.unFollowUser(selUser.model.id, function(_resp) {
    if (_resp.success) {
      // update the lists
      updateFollowersFriendsLists(function() {

        // update the UI to reflect the change
        loadFriends(function() {
          Alloy.Globals.PW.hideIndicator();
          alert("You're no longer following " +
                                  selUser.displayName);
        });
      });

    } else {
      alert("Error unfollowing " + selUser.displayName);
    }
    Alloy.Globals.PW.hideIndicator();

  });
  _event.cancelBubble = true;
};

At this point, you should have completed all of the functions associated with the filter 
Clicked event handler so when the user is running the application, he can toggle between 
various user lists and followers.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  8 â•‡ W O R K I N G  W I T H  F R I E N D S  A N D  F O L L O W E R S 227

You can also experiment with following users and then unfollowing them to see how the user 
interface performs.

Updating the Application to Be  
Friend- and Location-Aware
These additional functions are added to personalize the user’s experience with the applica-
tion. Since you have now added the ability to select friends; you will now only show photos in 
the feed from the friends or from the current user.

The code searches for photos except for the inclusion of the _user.getFriends method, 
which gets the current user’s friends list. This list of user IDs is needed to add to the collec-
tion query’s where clause to ensure only photos from the current user and the user’s friends 
are included.

Updated function to add to the photo.js model file included here; be sure to add the code 
to the collection and not the model:

findMyPhotosAndWhoIFollow : function(_user, _options) {
  var collection = this;

  // get all of the current users friends
  _user.getFriends(function(_resp) {
    if (_resp.success) {

      // pluck the user ids and add current users id
      var idList = _.pluck(_resp.collection.models, "id");
      idList.push(_user.id);

      // set up where parameters using the user list
      var where_params = {
        "user_id" : {
          "$in" : idList
        },
        title : {
          "$exists" : true
        }
      };
      // set the where params on the query
      _options.data = _options.data || {};
      _options.data.order = '-created_at';

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M228

      _options.data.per_page = 25;
      _options.data.where = JSON.stringify(where_params);

      // execute the query
      collection.fetch(_options);
    } else {
      Ti.API.error('Error fetching friends');
      _options.error();
    }
  });
},

Summary
This chapter covered a lot of material around the data-view binding, which is a powerful con-
cept that you should be aware of when creating your applications. The underlying Backbone.
js event functionality is an important concept, so you are encouraged to review the Backbone 
documentation along with the Appcelerator Alloy documentation.

The Titanium.UI.ListView is a must-use in most situations because of the performance 
gains. At the time of writing this book, Titanium.UI.ListView has been recently released 
and there are still issues being resolved. However, it should not stop you from starting with 
Titanium.UI.ListView anyplace you would normally use a Titanium.UI.TableView.

Appcelerator Cloud Services pre-built objects once again save a lot of time by providing func-
tionality out of the box. In this example you implemented two-way friends with no approval 
required. The Appcelerator Cloud Services API allows for you to create friend relationships 
that require an approval. All of the functions are there for you to use; take a look at the docu-
mentation to see if there is a better fit for your implementation.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 9
Working with Maps  
and L ocat ions

APPCELERATOR TITANIUM PROVIDES excellent support for most of your geolocation 
needs. This is not the complete demonstration of the functionality, but serves as more of an 
introduction. You should review the documentation provided on the website; the wiki has a 
separate section on using geolocation. Also review the Q&A forums, where you might find 
that someone has run into the same problem you are facing and the community has pro-
vided a solution.

See http://docs.appcelerator.com/titanium/latest/#!/guide/Location_
Services for more information.

Associating GPS Information When Saving a Photo
Associating GPS information when you’re saving a photo involves the following steps, which 
are outlined in the following sections:

■	 Modifying the photo model

■	 Getting GPS information from a device

■	 Creating a CommonJS library for geolocation

■	 Updating the feed controller to add location to a photo

Modifying the Photo Model
No changes are required to the photo model to support saving geolocation information with 
the object. Appcelerator Cloud Services provides custom fields for storing this information. 
The way you have implemented the photo model allows for additional fields to be passed as 
parameters to the Save method of the photo model. That is the only change that’s required.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/guide/Location_Services
http://docs.appcelerator.com/titanium/latest/#!/guide/Location_Services
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M230

Getting GPS Information from a Device
To get geolocation information from the device, Appcelerator has provided a fair bit of func-
tionality out of the box in its location services library. You will be integrating the Ti.
Geolocation library with your app to get the user’s location. This location will be saved 
with the photo when the user takes the photo. You will use the function once again when you 
need to find the user’s current location in order to display photos near the user.

Since you will be utilizing this functionality in multiple places in the application, it is a good 
example of where you can integrate a CommonJS library for geolocation-related functionality.

Creating a CommonJS Library for Geolocation
You need to create a new file called geo.js and save it in the folder called lib. The lib 
folder should be inside of the app folder in the project directory.

In the geo.js file you create a function called getCurrentLocation with one parameter, 
which is a callback. This is the method that will be called when the device completes the 
request for the current location. If the request is successful, the current geo-coordinates will 
be returned as a JSON object, similar to the following code:

{
    "accuracy": 100,
    "altitude": 0,
    "altitudeAccuracy": null,
    "heading": 0,
    "latitude": 40.493781233333333,
    "longitude": -80.056671
    "speed": 0,
    "timestamp": 1318426498331
}

In the locationCallbackHandler function, you want to have your code handle error 
conditions properly. In order to do that, you will check for the callback returning the _location 
object since that is where you will find the latitude and longitude coordinates. The check first 
makes sure there was no error from location services, and then checks the location and the 
location coordinates object for values. If no values are found, an error is returned and the  
_location object is set to null.

Here is the code for the locationCallbackHandler. This code will be called whenever 
the device generates a location event.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 231

function locationCallbackHandler(_location) {

  // remove event handler since event was received
  Ti.Geolocation.removeEventListener('location',
                                  locationCallbackHandler);

  if (!_location.error && _location && _location.coords) {

    var lat, lng;

    lat = _location.coords.latitude;
    lng = _location.coords.longitude;

    reverseGeocoder(lat, lng, function(_title) {
      locationCallback({
        coords : _location.coords,
        title : _title
      }, null);
      locationCallback = null;
    });
  } else {
    alert('Location Services Error: ' + _location.error);
    _callback(null, _location.error);
  }
}

Along with the latitude and longitude values from the device, you can also retrieve a more 
descriptive name of the location. The Appcelerator framework provides a function for reverse 
geolocation lookup. You provide the function with the coordinates and it will return a list of 
locations that match the coordinates. The following code incorporates this functionality so you 
will have both the coordinates and a descriptive name of the location to save with the photo.

The geolocation function incorporating the reverse lookup is listed next. The function will 
return a JavaScript object in the callback containing the geo-coordinates and a title string for 
the location. These values are used when saving the photo.

Here is the reverse geolocation function code that should be added to geo.js:

function reverseGeocoder(_lat, _lng, _callback) {
  var title;

  Ti.Geolocation.purpose = "Wiley Alloy App Demo";

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M232

  // callback method converting lat lng into a location/address
  Ti.Geolocation.reverseGeocoder(_lat, _lng, function(_data) {
    if (_data.success) {

      Ti.API.debug("reverseGeo "+JSON.stringify(_data, null, 2));

      var place = _data.places[0];
      if (place.city === "") {
        title = place.address;
      } else {
        title = place.street + " " + place.city;
      }
    } else {
      title = "No Address Found: " + _lat + ", " + _lng;
    }
    _callback(title);
  });
}

In the latest version of Appcelerator, the geolocation module has been updated to support 
better information when running on the Android OS. To get the customized functionality 
you will need to use the Titanium.Geolocation.Android. There is additional informa-
tion available on the Appcelerator documentation site at http://docs.appcelerator.
com/titanium/3.0/#!/api/Titanium.Geolocation.Android.

The getCurrentLocation function in geo.js is in the next code snippet. Notice the 
exports in the beginning of the function name; they allow you to call the library function 
when you require the library elsewhere in your code.

This function will create the location event listener that will respond to the device providing 
the GPS data. The callback handler mentioned previously will process the data and do the 
reverse geo lookup for additional information on the photo’s location.

Add this code to geo.js:

exports.getCurrentLocation = function(_callback) {

  if (!Ti.Geolocation.getLocationServicesEnabled()) {
    alert('Location Services are not enabled');
    _callback(null, 'Location Services are not enabled');
    return;
  }

www.it-ebooks.info

http://docs.appcelerator.com/titanium/3.0/#!/api/Titanium.Geolocation.Android
http://docs.appcelerator.com/titanium/3.0/#!/api/Titanium.Geolocation.Android
http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 233

  // save in global for use in locationCallbackHandler
  locationCallback = _callback;

  Ti.Geolocation.purpose = "Wiley Alloy App Demo";
  Ti.Geolocation.accuracy = Ti.Geolocation.ACCURACY_HIGH;
  Ti.Geolocation.distanceFilter = 10;
  Ti.Geolocation.addEventListener('location',
                                 locationCallbackHandler);
};

Be sure to add the global variable locationCallback to the top of the file also.

Here’s an example callback response object:

{
    "coords": {
        "timestamp": 1374430154064,
        "altitude": 0,
        "speed": -1,
        "latitude": 38.35954666137695,
        "longitude": -75.07244873046875,
        "accuracy": 5,
        "altitudeAccuracy": -1,
        "heading": -1
    },
    "title": "31st Street, Ocean Bay City, Maryland, 21842"
}

Updating the Feed Controller  
to Add Location to a Photo
The feed controller will now need to update the process image function and pass the geoloca-
tion information to the photo model when it is saved. This information will be saved with the 
other the information when the photo is saved to Appcelerator Cloud Services.

The change you will make to the feed.js is to first include the new geo library you created 
by adding the require line to the beginning of the file.

// load Geolocation library
var geo = require("geo");

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M234

Now that the library is accessible in feed.js, you can call the method to get the current 
location. Remember that since it is an asynchronous call, you must place the process image 
functionality inside the getCurrentLocation callback.

Since there is a possibility of the getCurrentLocation function not being able to success-
fully return _coords, you must account for the error condition in the code. In this case, you 
will allow for the image to be saved without the _coords field set, but you must check for 
the condition here. You will check for it later when attempting to display the location of the 
image in the map view.

function processImage(_mediaObject, _callback) {

    geo.getCurrentLocation(function(_coords) {

        var parameters = {
            "photo" : _mediaObject,
            "title" : "Sample Photo " + new Date(),
            "photo_sizes[preview]" : "200x200#",
            "photo_sizes[iphone]" : "320x320#",
            // Since we are showing the image immediately
            "photo_sync_sizes[]" : "preview",
        };

        // if we got a location, then set it
        if (_coords) {
            parameters.custom_fields = {
               coordinates : [_coords.coords.longitude,
                              _coords.coords.latitude],
               location_string : _coords.title
            };
        }

        var photo = Alloy.createModel('Photo', parameters);

        photo.save({}, {

            success : function(_model, _response) {
                Ti.API.debug('success: ' + _model.toJSON());
                _callback({
                    model : _model,
                    message : null,
                    success : true
                });
            },

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 235

            error : function(e) { debugger;
                Ti.API.error('error: ' + e.message);
                _callback({
                    model : parameters,
                    message : e.message,
                    success : false
                });
            }
        });
    });
}

The new function takes the _coords parameter and passes the values as custom fields to the 
Appcelerator Cloud Services photo object. Appcelerator Cloud Services supports geolocation 
queries against photo objects so you can find photos using this information stored in the 
custom fields of the photo. See the Appcelerator Cloud Services for additional information 
on custom fields at http://docs.appcelerator.com/cloud/latest/#!/guide/
customfields-section-5.

Displaying the Photo Location on a Map
Create the .js controller choosing File ➪ New ➪ Alloy Controller from the context menu. 
Add the code to the mapView.js file. You will display a thumbnail of the photo along with 
the tile and the location of the image in the header.

You can see that the code takes the args.photo object that is passed and gets the appropri-
ate properties from the object to display in the user interface. You use the predefined image 
transformation “preview” from Appcelerator Cloud Services and the custom_fields saved 
with the object to provide an informative display.

You will need the proper layout information included in the style file for the application to 
create the proper user interface.

Android Support for Google Maps v2
To include support for the new Google Maps in your Android project, you need to follow the 
directions here on the Appcelerator website on updating your tiapp.xml configuration 
after setting up the Google service. See http://docs.appcelerator.com/titanium/
latest/#!/guide/Google_Maps_v2_for_Android.

After those changes are made you need to add the map module to your project in tiapp.
xml. Add the module to the project the same way you added the Facebook module.

www.it-ebooks.info

http://docs.appcelerator.com/cloud/latest/#!/guide/customfields-section-5
http://docs.appcelerator.com/cloud/latest/#!/guide/customfields-section-5
http://docs.appcelerator.com/titanium/latest/#!/guide/Google_Maps_v2_for_Android
http://docs.appcelerator.com/titanium/latest/#!/guide/Google_Maps_v2_for_Android
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M236

Create the global map object that you will use in this section by adding the following line to 
the bottom of alloy.js:

Alloy.Globals.Map = require(’ti.map’);

Add this code to the new controller file you created in mapView.js:

var args = arguments[0] || {};

// get the photo object from the parameters
var coords = args.photo.get("custom_fields").coordinates[0];
var locationString = args.photo.get("custom_fields").location_
string;

// create annotation
var annotation = Alloy.Globals.Map.createAnnotation({
    latitude : Number(coords[1]),
    longitude : Number(coords[0]),
    title : args.photo.get("title"),
    subtitle : locationString,
    myid : args.photo.id
    //leftView : imageView,
    // animate : true
});
// set the header
$.thumb.image = args.photo.get("urls")["preview"];
$.title.text = args.photo.get("title");
$.location.text = locationString;

// add them to map
$.mapview.setAnnotations([annotation]);

// set the region around the photo
$.mapview.setRegion({
    latitude : annotation.latitude,
    longitude : annotation.longitude,
    latitudeDelta : 0.040,
    longitudeDelta : 0.040
});

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 237

Android Support for ActionBar in MapView
Since you are building a cross-platform solution, additional changes are required to support 
the Android back button and the ActionBar/Title Bar on the Android OS.

The code you need to add will handle the user clicking on the back button; add this code to 
the end of the mapView.js controller file:

// detect click on back button
$.getView().addEventListener("androidback",
                              androidBackEventHandler);

// handle the event and close the window
function androidBackEventHandler(_event) {
  _event.cancelBubble = true;
  _event.bubbles = false;
  $.getView().removeEventListener("androidback", 
androidBackEventHandler);

  $.getView().close();
}

To get the application to properly respond to a click on a menu icon to go back in the applica-
tion, add this code to the end of the mapView.js controller file:

$.getView().addEventListener("open", function() {
  OS_ANDROID && ($.getView().activity.onCreateOptionsMenu =
  function() {
    var actionBar = $.getView().activity.actionBar;
    if (actionBar) {
      actionBar.displayHomeAsUp = true;
      actionBar.onHomeIconItemSelected = function() {
        $.getView().removeEventListener("androidback",
                                      androidBackEventHandler);
        $.getView().close();
      };
    }
  });
});

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M238

Adding the Map Component to MapView XML
The map view uses a different namespace than the standard Titanium modules so you need 
to add the ns attribute to the XML element when placing it in the view file. You add a basic 
window as the container for the map and place the map in the window. There is some basic 
styling applied to the map object in the mapview.tss file.

You can also add text fields to provide more information, such as a title and location of 
the photo.

<Alloy>
    <Window id="mainWindow">
        <View id="header">
            <ImageView id="thumb"></ImageView>
            <View id="textContainer" >
                <Label id="title"></Label>
                <Label id="location"></Label>
            </View>
        </View>
        <View ns="Alloy.Globals.Map" id="mapview" ></View>
    </Window>
</Alloy>

Here are the styles, which are added into mapview.tss for the layout of the map view and 
the associated header information. The main objects are the map view and the header. The 
header contains the thumb, the title, and the location that is laid out separately from the 
map view.

"#mainWindow" : {
    backgroundColor: "white",
    title: "Location Detail",
    top: "0dp",
    layout: "vertical",
    width: "100%",
    height: "100%"
},
"#mapview" : {
    width: "90%",
    height: "290dp" ,
    top: "5dp",
    borderColor: "gray",
    borderWidth: 1
},

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 239

"#thumb" : {
    top: '5dp',
    width: '38dp',
    height: '38dp'
},
"#header" : {
    width: "90%",
    height: Ti.UI.SIZE,
    layout: "horizontal"
},
'#title' : {
    top: '2dp',
    left: '2dp',
    width: Ti.UI.SIZE,
    height: Ti.UI.SIZE,
    textAlign: 'left',
    font: {
        fontSize: '13dp'
    }
},
'#location' : {
    top: '2dp',
    left: '2dp',
    width: Ti.UI.SIZE,
    height: Ti.UI.SIZE,
    textAlign: 'left',
    font: {
        fontSize: '10dp'
    }
},
"#textContainer" : {
    left :"5dp",
    width: Ti.UI.FILL,
    height: Ti.UI.SIZE,
    layout: "vertical"
}

The list of photos in the feed view did not originally contain a button to view the location of 
the photo on the map. The following changes will add a button for the user to view a map.

<Alloy>
    <TableViewRow id="row" row_id="">
        <View class="container">

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M240

            <Label id="titleLabel"></Label>
            <View id="imageContainer">
                <ImageView id="image"></ImageView>
            </View>
            <View id="buttonContainer">
                 <Button id="commentButton">Comment</Button>
                 <Button id="shareButton">Share</Button>
                 <Button id="locationButton">Location</Button>
            </View>
        </View>
    </TableViewRow>
</Alloy>

Minor modifications to the feedRow.tss file are added to account for the new button 
added. You will see that the button size has been adjusted to approximately 30% of the width 
of the view, which allows for some spacing between the buttons. You will also need to adjust 
the font size some so that the button titles appear properly in the windows.

"#commentButton" : {
 width: '30%',
 left: '6dp',
 height: '32dp'
},
"#shareButton" : {
 left: '6dp',
 width: '30%',
 height: '32dp'
}
"#locationButton" : {
 left: '6dp',
 width: '30%',
 height: '32dp'
}
"#commentButton[platform=android]" : {
  height : '42dp'
}, 
"#shareButton[platform=android]" : {
  height : '42dp'
}, 
"#locationButton[platform=android]" : {
  height : '42dp'
},

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 241

Add another event listener to respond to the button click in the feed view. This button click 
will execute the handler to display the map view. You add the following code to the feed.js 
controller file.

// EVENT HANDLERS
function processTableClicks(_event) { debugger;

    if (_event.source.id === "commentButton") {
        handleCommentButtonClicked(_event);
    } else if (_event.source.id === "locationButton") {
        handleLocationButtonClicked(_event);
    } else if (_event.source.id === "shareButton") {
        alert('Will do this later!!');
    }
}

Now you’ll add a handler to open the map view in response to the user clicking on the loca-
tion button when there is a location. Since there is the possibility that a location was not 
saved when the photo was taken, you need to check the custom_fields returned from the 
photo for the coordinates object. If there is no field, the detail view with the map will not 
be displayed and the user will be alerted.

function handleLocationButtonClicked(_event) {

    var collection = Alloy.Collections.instance("Photo");
    var model = collection.get(_event.row.row_id);

    var customFields = model.get("custom_fields");

    if (customFields && customFields.coordinates) {
        var mapController = Alloy.createController("mapView", {
            photo : model,
            parentController : $
        });

        // open the view
  Alloy.Globals.openCurrentTabWindow(mapController.getView());
    } else {
        alert("No Location was Saved with Photo");
    }
}

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M242

If you run your application, you should see there are now three buttons on each row under 
the photo. The new Location button has been added. If you clicked it right now it would dis-
play an alert saying that no location is found. Figures 9-1 and 9-2 show the new row and alert 
in iOS and Android, respectively.

Figure 9-1: The new feedRow with a Location link on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 243

Figure 9-2: The new feedRow with a Location button on Android.

Now take a photo on your device and wait for the view to update and display the new photo 
on your feed list. After the photo appears on your feed list, click the Location button. You 
should see a view of the map showing where the photo was just taken. The Location Detail 
page should look similar to Figures 9-3 and 9-4.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M244

Figure 9-3: Photo location detail view on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 245

Figure 9-4: Photo location detail view on Android.

Displaying a Map of Photos Near Your Location
You have created a view that shows the location of the one photo on the map; the next feature 
will show all of the photos in the existing list in a map view. This example will try to keep things 
simple by just showing the first 25 images, but a more complex example could potentially 
update the map view as the user scrolls into new regions and adds additional image locations.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M246

Querying ACS Photo Objects Using  
Your Current Location
Appcelerator Cloud Services provides support for geolocation-based queries on objects that 
contain the custom_field coordinates. Earlier in the chapter, you added that support to 
the photos that were saved so you should have data ready to be queried.

You will need to update the photo model in photo.js with a custom function to execute this 
query. This function could be incorporated in the feeds.js controller, but adding it to the 
photo model separates the functionality by placing it in a more appropriate place. This also 
allows for the query to be used in other places of the application without duplicating code. See 
http://docs.appcelerator.com/cloud/latest/#!/guide/search_query.

The new function will convert the distance parameter to radians since the Appcelerator 
Cloud Services API needs the parameter converted. Finally, the function will execute the col-
lection’s fetch function to return the photos the desired distance from current location.

Add the following code to the photos.js model as a function to extend the collection 
object. Be sure to add the code to the collection and not the model.

findPhotosNearMe :function(_user, _location, _distance, _options) {
  var collection = this;

  // convert distance to radians if provided
  var distance = _distance ? (_distance / 3959) : 0.00126;

  if (_location === null) {
    _options.error("Could Not Find Photos");
    return;
  }
  // get all of the current users friends
  _user.getFriends(function(_resp) {
    if (_resp.success) { debugger;

      var idList = _.pluck(_resp.collection.models, "id");
      idList.push(_user.id);

      // first we get the current location
      var coords = [];
      coords.push(_location.coords.longitude);

www.it-ebooks.info

http://docs.appcelerator.com/cloud/latest/#!/guide/search_query
http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 247

      coords.push(_location.coords.latitude);

      // set up where parameters
      var where_params = {
        "user_id" : {
          "$in" : idList
        },
        "coordinates" : {
          "$nearSphere" : coords,
          "$maxDistance" : distance // 5 miles in
          // radians
        }
      };
      // set the where params on the query
      _options.data = _options.data || {};
      _options.data.per_page = 25;
      _options.data.where = JSON.stringify(where_params);

      // execute the query
      collection.fetch(_options);
    } else {
      _options.error("Could Not Find Photos");
      return;
    }
  });
}

Remember to do the proper error-checking in case there is an issue getting the device’s current 
location. The function does check to see if the _location parameter is valid; otherwise, it 
returns an error.

Updating the User Interface to Show a Map View
For the user interface, you will add a map view to the main feed tab and toggle the view 
between a list of items and a map view showing the photos closest to your current location.

In the feed.xml view file you will add a section for the tabbed button on iOS, which will be 
used to toggle between the two views. This code should be added directly above the location 
in the file where the table view is created.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M248

Since you are building a cross-platform solution, you need to account for the differences between 
iOS and Android devices. The following code is added to support the selection of the view to be 
either the list of photos or the map view of the photos closest to the current location.

<View id="filterContainer" >
    <TabbedBar id="filter" platform="ios" >
        <Labels>
            <Label>List</Label>
            <Label>Map</Label>
        </Labels>
    </TabbedBar>
</View>

Now for Android support, you use the Picker control, adding it to the same filterâ•‰
Container element just below the iOS TabbedBar control. After the Android or iOS code 
is added, the filterContainer should look similar to the following code.

<View id="filterContainer" >
    <TabbedBar id="filter" platform="ios">
        <Labels>
            <Label >List</Label>
            <Label >Map</Label>
        </Labels>
    </TabbedBar>
    <View id="androidPickerContainer" platform="android">
      <Picker id="filter" selectionIndicator="true">
        <PickerColumn id="column1">
            <PickerRow title="List"/>
            <PickerRow title="Map"/>
        </PickerColumn>
      </Picker>
    </View>
</View>

You will need to add the associated changes to the feed.tss file to properly layout the 
tabbedbar on the feedWindow. You are laying out these larger view objects vertically so 
they will appear in the screen from top to bottom.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 249

"#feedWindow" : {
    layout: "vertical"
},
"#filterContainer" : {
    top: "5dp",
    height: Ti.UI.SIZE,
    width: "70%"
},
"#filter[platform=ios]" : {
    style: Ti.UI.iPhone.SystemButtonStyle.BAR,
    height: 30,
    width: "70%"
}
"#filter[platform=android]" : {
    height: "38dp",
    width: "70%"
},
'#androidPickerContainer' : {
    height: Ti.UI.SIZE,
    width: Ti.UI.SIZE,
    backgroundColor : '#A3A3A3'
},
"#mapview" : {
    width: "90%",
    height: Ti.UI.FILL,
    top: "5dp",
    bottom: "5dp",
    borderColor: "gray",
    borderWidth: 1,
    visible: false
},
"#feedTable" : {
    width: Ti.UI.FILL,
    height: Ti.UI.FILL
}

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M250

The map view will be shown when the user selects the item on the tabbedBar by hiding the 
tableView and showing the map view. The tableView will be displayed when the user 
clicks the list item on the tabbedBar. See Figures 9-5 and 9-6.

Figure 9-5: The new tabbed button on an iOS screen.

The feed.xml view will be changed to place both the tableView and the mapView on top of 
one another on the view. You will need to replace the code in the feed.xml file where the 
table is currently created, and replace it with the following code.

<View id="viewContainer">
    <TableView id="feedTable"></TableView>
    <View ns="Alloy.Globals.Map" id="mapview" ></View>
</View>

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 251

Figure 9-6: The new picker on an Android screen.

Changes in the feed.js Controller
The controller will have quite a few changes, but they are pretty straightforward and similar 
to code you have written already. First, you need to create the listener, handler pair to 
respond to the click on the tabbedBar buttons or to the UI.Picker on Android that you 
added in the feed.xml view.

$.filter.addEventListener( OS_IOS ? 'click':'change',
                           filterTabbedBarClicked);

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M252

Next is the handler function, where the filterTabbedBarClicked method is passed  
an event object that contains the index of the button item clicked in the tabbedBar or  
the rowIndex of the item clicked in the UI.Picker. You will then use the value called  
itemSelected to take the appropriate action and update the user interface by showing 
either the map view or the list view.

function filterTabbedBarClicked(_event) {
    var itemSelected = OS_IOS ? _event.index : _event.rowIndex;
    switch (itemSelected) {
        case 0 :
            // List View Display
            $.mapview.visible = false;
            $.feedTable.visible = true;
            break;
        case 1 :
            // Map View Display
            $.feedTable.visible = false;
            $.mapview.visible = true;
            showLocalImages();
            break;
    }
}

You have seen the functions used to display the list view from earlier in the book; now you 
will add two functions to the feed.js controller to display the same information in a map 
view relative to the current location of the user.

The first function you will create is showLocalImages. This function will call the extended 
method you added to the photo model to find all images within a specified distance from 
the user. The method follows the familiar pattern of creating the collection, setting the query 
parameters, and then handling the success or error conditions. Add the following function to 
the feed.js controller file:

function showLocalImages() {
  // create new photo collection
  $.locationCollection = Alloy.createCollection('photo');

  // find all photos within five miles of current location
  geo.getCurrentLocation(function(_coords) {
    var user = Alloy.Globals.currentUser;

    $.locationCollection.findPhotosNearMe(user, _coords, 5, {

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 253

      success : function(_collection, _response) {
        Ti.API.info(JSON.stringify(_collection));

        // add the annotations/map pins to map
        if (_collection.models.length) {
          addPhotosToMap(_collection);
        } else {
          alert("No Local Images Found");
          filterTabbedBarClicked({
            index : 0,
            rowIndex : 0,
          });

          if (OS_ANDROID) {
            $.filter.setSelectedRow(0, 0, false);
          } else {
            $.filter.setIndex(0);
          }
        }
      },
      error : function(error) {
        alert('Error loading Feed ' + e.message);
        Ti.API.error(JSON.stringify(error));
      }
    });
  });
}

If the query is successful, the response will be a collection of images, which will be passed to 
the next function called addPhotosToMap. This function will use the geo-coordinates in the 
photo model to create map annotations to place on the map. The use of these Appcelerator 
Framework API calls for map functionality should be familiar by now. There is one difference 
in that now you will create an array of annotations and place them all on the map at once.

function addPhotosToMap(_collection) {
  var annotationArray = [];
  var lastLat;

  // remove all annotations from map
  $.mapview.removeAllAnnotations();

  var annotationRightButton = function() {

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M254

    var button = Ti.UI.createButton({
      title : "X",
    });
    return button;
  };

  for (var i in _collection.models) {
    var mapData = _collection.models[i].toJSON();
    var coords = mapData.custom_fields.coordinates;
    var annotation = Alloy.Globals.Map.createAnnotation({
      latitude : Number(coords[0][1]),
      longitude : Number(coords[0][0]),
      subtitle : mapData.custom_fields.location_string,
      title : mapData.title,
      //animate : true,
      data : _collection.models[i].clone()
    });

    if (OS_IOS) {
      annotation.setPincolor(Alloy.Globals.Map.ANNOTATION_RED);
      �annotation.setRightButton(Titanium.UI.iPhone.SystemButton.

DISCLOSURE);
    } else {
      annotation.setRightButton(annotationRightButton);
    }
    annotationArray.push(annotation);

  }

  // calculate the map region based on the annotations
  var region = geo.calculateMapRegion(annotationArray);
  $.mapview.setRegion(region);

  // add the annotations to the map
  $.mapview.setAnnotations(annotationArray);
}

You can see in this code that you are first ensuring there are no annotations on the map by 
removing them all, and then creating an array of the new annotations to add to the map.

There is another helper function that was added to geo.js library that calculates the region 
of the map based on the annotations that are being added. See Figures 9-7 and 9-8 for the 
end result.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 255

Figure 9-7: Map view with pins for local images on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M256

Figure 9-8: Map view with pins for local images on Android.

Responding to Clicks on Map Annotations
When the user clicks on the map annotations, you want to show a detail screen of the image 
similar to what the user would see if the image was scrolled on the list view. It would be ideal 
to reuse the code from the list view for this purpose.

Changes to feed.js will require an additional event listener and handler pair to capture the 
click on the map and the map annotation.

$.mapview.addEventListener('click', mapAnnotationClicked);

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 257

Next is the function called mapAnnotationClicked, which responds to the event. In the 
function, you will look for a click on the rightbutton of the map annotation to indicate 
the user’s desire to show the details for the image represented by the map pin.

The click event function receives the event with the annotation object and a clicksource 
property, which lets you know if the rightbutton was selected. If the rightbutton was 
selected, you will open a new mapDetail.js controller and pass it the necessary informa-
tion for displaying and handling clicks in the window.

function mapAnnotationClicked(_event) {
  // get event properties
  var annotation = _event.annotation;
  //get the Myid from annotation
  var clickSource = _event.clicksource;

  var showDetails = false;

  if (OS_IOS) {
    showDetails = (clickSource === 'rightButton');
  } else {
    showDetails = 
      (clickSource === 'subtitle' || clickSource === 'title');
  }

  if (showDetails) {

    // load the mapDetail controller
    var mapDetailCtrl = Alloy.createController('mapDetail', {
      photo : annotation.data,
      parentController : $,
      clickHandler : processTableClicks
    });

    // open the view
    Alloy.Globals.openCurrentTabWindow(mapDetailCtrl.getView());

  } else {
    Ti.API.info('clickSource ' + clickSource);
  }
};

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M258

There is some interesting reuse of code here. Notice you are passing in the clickHandler 
for the tableRow, processTableClicks. If you remember, the click handler for the table 
row handles the clicks on the comment, share, and location buttons. In this map detail 
view, the application needs to respond to those clicks and perform the appropriate actions. 
The application will be reusing this functionality in the mapDetail controller by passing the 
event object back to the parent controller to execute the proper actions for displaying com-
ments and sharing information on the photo.

For this to work properly, the application will need to be modified to handle the different 
event objects that will be sent from the mapDetail view. The processTableClicks func-
tion passes control to the specific button handler based on the button ID; each of these func-
tions is changed to add a condition for detecting if the event came from the tableRow or if 
it came from the mapDetail controller. If the click did not come from the tableRow, the 
application will expect to find the event information in the data field as opposed to attempt-
ing to retrieve it from the collection on the page.

The changes to the feed.js controller handleCommentButtonClicked is listed here:

function handleCommentButtonClicked(_event) {
  var collection, model = null;

  // handle call from mapDetail or feedRow
  if (!_event.row) {
    model = _event.data;
  } else {
    collection = Alloy.Collections.instance("Photo");
    model = collection.get(_event.row.row_id);
  }

  var controller = Alloy.createController("comment", {
    photo : model,
    parentController : $
  });

  // initialize the data in the view, load content
  controller.initialize();

  // open the view
  Alloy.Globals.openCurrentTabWindow(controller.getView());

}

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 259

Now you will create the new controller named mapDetail. Starting with the mapDetail.
xml view file, you will create the interface.

<Alloy>
    <Window id="mainWindow"  fullscreen="false" >
        <View class="container">
            <Label id="titleLabel"></Label>
            <View id="imageContainer">
                <ImageView id="image"></ImageView>
            </View>
            <View id="buttonContainer">
                <Button id="commentButton">Comment</Button>
                <Button id="shareButton">Share</Button>
            </View>
        </View>
    </Window>
</Alloy>

The mapDetail.tss style file is very similar to the feedRow.tss style except for the removal 
of the location button since it is not needed in the map detail. See Figures 9-9 and 9-10.

'.container': {
  layout: 'vertical',
  width: '90%'
},
'#buttonContainer': {
  layout: 'horizontal',
  width: Ti.UI.FILL,
  height: '42dp'
},
'#image': {
  top: '5dp',
  left: '14dp',
  width: '270dp',
  height: '270dp'
},
'#imageContainer': {
  width: '300dp',
  height: '284dp'
},
'#commentButton': {
  left: '26dp',
  width: '40%',

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M260

  height: '32dp'
},
'#shareButton': {
  left: '10dp',
  width: '40%',
  height: '32dp'
}
'#commentButton[platform=android]': {
  height: '42dp'
},
'#shareButton[platform=android]': {
  height: '42dp'
}

Figure 9-9: Selected pin on iOS; user expects to see detail when clicked.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 261

Figure 9-10: Selected pin on Android; user expects to see detail when clicked.

Creating the controller for mapDetail.js is very similar to the code used in feedRow.js 
except for how the application will handle clicks events on the view. The application uses the 
parameters passed in on creation of the controller to set the image and the labels appropri-
ately. The interesting code is how the events are handled on the view.

The eventListener assigned to the buttonContainer gets the model objects that were 
passed into the view and adds them to the event object. The event object is then passed on to 
the clickHander that was provided to the controller when it was created. This is the 
clickHandler processTableClicks that was created in feed.js.

// Get the parameters passed into the controller
var parameters = arguments[0] || {};
var currentPhoto = parameters.photo || {};

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M262

var parentController = parameters.parentController || {};

$.image.image = currentPhoto.attributes.urls.preview;
$.titleLabel.text = currentPhoto.attributes.title || '';

// get comment count from object
var count = currentPhoto.attributes.reviews_count !== undefined ? 
currentPhoto.attributes.reviews_count : 0;

// modify the button title to show the comment count
// if there are comments already associated to photo
if (count !== 0) {
  $.commentButton.title = "Comments (" + count + ")";
}

$.buttonContainer.addEventListener('click', function(_event) {
  // add the model information as data to event
  _event.data = currentPhoto;
  parameters.clickHandler(_event);
});

$.getView().addEventListener("androidback", 
androidBackEventHandler);

function androidBackEventHandler(_event) {
  _event.cancelBubble = true;
  _event.bubbles = false;
  $.getView().removeEventListener("androidback", 
androidBackEventHandler);

  $.getView().close();
}

// Set up the menus and actionBar for Android if necessary
$.getView().addEventListener("open", function() {
  �OS_ANDROID && ($.getView().activity.onCreateOptionsMenu = 

function() {
    var actionBar = $.getView().activity.actionBar;
    if (actionBar) {
      actionBar.displayHomeAsUp = true;
      actionBar.onHomeIconItemSelected = function() {
        $.getView().removeEventListener("androidback",
                                   androidBackEventHandler);

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  9 â•‡ W O R K I N G  W I T H  M A P S  A N D  L O C A T I O N S 263

        $.getView().close();
      };
    }
  });
});

The application should now display the map pins indicating where you or your friends took 
pictures. Remember you will most likely need to take new photos on your device to get the 
locations saved with the photos.

Once you click on the map annotations, the application should display a photo detail page 
that looks similar to Figure 9-11 or 9-12, depending on your platform.

Figure 9-11: Detail view displayed when annotation is clicked on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M264

Figure 9-12: Detail view displayed when annotation is clicked on Android.

Summary
This chapter covered the integration of maps and geolocation. Location-aware applications 
are well suited for mobile devices since the GPS is integrated into the operating system. The 
combination of the ease of use provided by the Appcelerator Titanium map module and the 
Appcelerator Cloud Services location-based queries open up tremendous possibilities of 
what can be accomplished very quickly with the Appcelerator toolset.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 10
S har ing v ia  Facebook ,  
Emai l ,  and Twitter

APPCELERATOR TITANIUM PROVIDES excellent support for sharing using the Facebook 
module and also for sharing via email if it is properly configured on the device. There are more 
options for sharing, specifically Twitter, but that is not currently incorporated into the frame-
work although there are various open source solutions to support that functionality.

In this chapter, you will integrate sharing to the Facebook wall, sharing the photo to the 
user’s Facebook photo album, sharing the photo on Twitter, and finally sharing the photo as 
an attachment through email.

The examples here use the Facebook module and custom code from Appcelerator Alloy 
social.js module for Twitter integration. There are open source modules to integrate 
social media using the native APIs and the IOS 6 native integration of Facebook and Twitter 
that can be found in the Appcelerator Marketplace and on Github.

Creating the CommonJS Library  
for Sharing Functions
To get started, you need to create a new file called sharing.js and add it to the lib folder cre-
ated previously. In the sharing.js library file you will start off by ensuring that the Facebook 
module has been loaded. Add the following code to the top of the sharing.js library file:

// if facebook not loaded, then load it
if (!Alloy.Globals.FB) {
  Alloy.Globals.FB = require('facebook');
}

// Enabling single sign on using FB
Alloy.Globals.FB.forceDialogAuth = false;

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M266

// get the app id
Alloy.Globals.FB.appid =
       Ti.App.Properties.getString("ti.facebook.appid");

The application will provide the users with three choices for sharing:

■	 Posting a message to the user’s Facebook wall.

■	 Posting the picture to the user’s Facebook Album.

■	 Sharing the image through the user’s email.

The Appcelerator Titanium Framework has an option dialog that’s used to allow the user to 
select the method of sharing (see Figures 10-1 and 10-2). Once the user selects a share 
method, the application will verify the Facebook permission, if necessary, and then call the 
appropriate function from the share library.

Figure 10-1: Sharing options for sharing a photo on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 0 â•‡ S H A R I N G  V I A  F A C E B O O K ,  E M A I L ,  A N D  T W I T T E R 267

Figure 10-2: Sharing options for sharing a photo on Android.

exports.sharingOptions = function(_options) {

  var dialog, params;

  if (OS_ANDROID) {
    params = {
      options : ['Facebook Feed', 'Facebook Photo', 'Email'],
      buttonNames : ['Cancel'],
      title : 'Share Photo'
    };
  } else {
    params = {
      options : [

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M268

        'Facebook Feed', 'Facebook Photo',
        'Email', 'Cancel'
      ],
      cancel : 3,
      title : 'Share Photo'
    };
  }

  dialog = Titanium.UI.createOptionDialog(params);
  // add event listener
  dialog.addEventListener('click', function(e) {

    // user clicked cancel 
    if ( OS_ANDROID && e.button) {
      return;
    }
    
    if (e.index === 0) {
      prepForFacebookShare(function() {
        shareWithFacebookDialog(_options.model);
      });
    } else if (e.index === 1) {
      prepForFacebookShare(function() {
        shareFacebookPhoto(_options.model);
      });
    } else if (e.index === 2) {
      shareWithEmailDialog(_options.model);
    }
  });

  // show the dialog
  dialog.show();

};

There are a few things you should notice. The sharingOptions method is the only method 
exported from this library; all of the other functions are accessible only from this library. The 
dialog is created with the options and the event listener determines which button was 
clicked.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 0 â•‡ S H A R I N G  V I A  F A C E B O O K ,  E M A I L ,  A N D  T W I T T E R 269

Facebook Permissions and Reauthorization
The new Facebook module for Appcelerator supports the latest Facebook SDK requirements for 
separating logging in to Facebook from requesting specific permissions for posting to the user’s 
wall or feed. In order to properly allow users to share the photos in the application, the applica-
tion must first check if the user has logged in to Facebook and then confirm that the user has 
provided the application with the proper permissions. See http://docs.appcelerator.
com/titanium/latest/#!/api/Modules.Facebook for more information.

Since the user in the application can create an account through Facebook or with an email 
and a password, the application needs to verify the user’s login status before verifying per-
mission. The following code is the first step in allowing sharing from the app.

Facebook’s new authorization process allows you to reauthorize the user to verify permis-
sions. The initial login for a user’s account can only request the minimum access; the follow-
ing code checks to see if the users have given the app the proper permission to post photos 
to their stream.

Add this code to sharing.js:

function checkPermissions(_permissions, _callback) {
  var FB = Alloy.Globals.FB;
  var query = "SELECT " + _permissions + " FROM permissions WHERE 
uid = me()";

  FB.request("fql.query", {
    query : query
  }, function(resp) {
    try {
      resp.result = JSON.parse(resp.result);
      _callback(resp);
    } catch (e) {
      _callback(resp);
    }
  });
};

This code uses the Appcelerator Facebook module to perform a Facebook query against the 
users account to see if the specified permission is available on the account. The Facebook 
module for Appcelerator supports the Facebook Query Language, the Facebook Graph API, 
and specific Facebook dialogs; you will use the Facebook Share dialog in the next section.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Modules.Facebook
http://docs.appcelerator.com/titanium/latest/#!/api/Modules.Facebook
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M270

In the function prepForFacebookShare, the application checks the logged in status. If the 
user is not logged in, it provides the user the opportunity to log in using the Facebook autho-
rize method. At this point the application flow is handled by the login event callback function 
loginCB. If the user successfully logs in to Facebook, the application flow will then call the 
function prepForFacebookShare again, this time with the appropriate credentials.

When the application calls prepForFacebookShare with the appropriate appID and settings, 
the application will first check if the permission is available using the checkPermissions 
function. If permission is not available, it will reauthorize the user with the new permission 
request and then move on. If the user approves the authorization for the additional permis-
sions, then the application is now prepared for sharing on Facebook. The code for the function is 
listed here, and should be added to sharing.js:

function prepForFacebookShare(_callback) {

  var FB = Alloy.Globals.FB;

  var loginCB = function(e) {
    if (e.success) {
      prepForFacebookShare(_callback);
    } else if (e.error) {
      alert(e.error);
    }
    // remove event listener now that we are done
    FB.removeEventListener('login', loginCB);
    return;
  };

  // if not logged in then log user in and then try again
  if (FB.loggedIn === false) {
    FB.addEventListener('login', loginCB);
    FB.authorize();
  } else {

    // First make sure this permission exists for user
    checkPermissions('publish_stream', function(_response) {
      var hasPermission=(_response.result[0].publish_stream === 1);
      if (_response.success && hasPermission) {
        _callback();
      } else {
        // if not try and get the permission
        FB.reauthorize(['publish_stream'], 'me', function(e) {
          if (e.success) {

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 0 â•‡ S H A R I N G  V I A  F A C E B O O K ,  E M A I L ,  A N D  T W I T T E R 271

            _callback();
          } else {
            alert('Authorization failed: ' + e.error);
          }
        });
      }
    });
  }
}

Sharing to the Facebook Wall
All of the sharing starts with clicking the Share button on the feed.xml or mapDetail.
xml view. Since the application responds to click events on the Share button in the feed.js 
controller, the code changes will begin there.

Feed.js Controller Changes
The first change to the application is to include the new library called share.js in the con-
troller file for the feed. At the top of the feed.js controller file, add this line:

// load sharing library
var sharing = require("sharing");

Next update the handleShareButtonClicked function to support the click on the 
shareButton. A click on the shareButton will call the new function called 
handleShareButtonClicked.

function processTableClicks(_event) {
  if (_event.source.id === "commentButton") {
    handleCommentButtonClicked(_event);
  } else if (_event.source.id === "locationButton") {
    handleLocationButtonClicked(_event);
  } else if (_event.source.id === "shareButton") {
    handleShareButtonClicked(_event);
  }
}

The function handleShareButtonClicked is structured the same as handleComment 
ButtonClicked; retrieve the proper model that is associated with the click and call the 
appropriate function to perform the action. In this case, I introduce a new CommonJS library 
to handle all of the sharing functionality for the application.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M272

Here is the code for the handleShareButtonClicked function:

function handleShareButtonClicked(_event) {
  var collection, model;

  if (!_event.row) {
    model = _event.data;
  } else {
    collection = Alloy.Collections.instance("Photo");
    model = collection.get(_event.row.row_id);
  }

  // commonjs library for sharing
  sharing.sharingOptions({
    model : model
  });
}

For sharing to the user’s wall, the application will use the Appcelerator Titanium Framework 
Facebook module, which provides access to the Facebook dialog API. See the specific 
Appcelerator documentation at http://docs.appcelerator.com/titanium/latest/â•‰
#!/api/Modules.Facebook.

Add this code to sharing.js:

function shareWithFacebookDialog(_model) {

  var data = {
    link : _model.attributes.urls.original,
    name : "tiGram Wiley Sample App",
    message : " ACS Alloy Sample App and the photo",
    caption : _model.attributes.title,
    picture : _model.attributes.urls.preview,
    description : "None"
  };

  Alloy.Globals.FB.dialog("feed", data, function(e) {
    if (e.success && e.result) {
      alert("Success!");
    } else {
      if (e.error) {

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Modules.Facebook
http://docs.appcelerator.com/titanium/latest/#!/api/Modules.Facebook
http://www.it-ebooks.info/


C H A P T E R  1 0 â•‡ S H A R I N G  V I A  F A C E B O O K ,  E M A I L ,  A N D  T W I T T E R 273

        alert(e.error);
      } else {
        alert("User canceled dialog.");
      }
    }
  });
}

So you can test the functions as you move through the chapter, add the other two functions 
from the shareOptions method as empty stubs so the application can compile. Add the 
stubbed-out methods to sharing.js:

function shareFacebookPhoto(_model) {}
function shareWithEmailDialog(_model) {}

Using the Facebook Feed dialog the application sets up the parameters for the function from 
the photo model that is passed into the method from the click event handler. The application 
provides the URL for the original image upload, which should be the larger of the images. The 
application also provides a title from the model and the preview URL for a smaller version of 
the image to display in the feed.

Run the application and select the Facebook Feed option to see the image uploaded to your 
Facebook Feed. If you have not logged in with Facebook yet, the application will prompt you 
to and request the appropriate permissions. See Figure 10-3; note that the screens look very 
similar so only the iOS version is presented here.

Sharing to the Facebook Album
Sharing to the photo album is a bit more complex since the Facebook module requires the 
image blob, not an URL for uploading the image. An additional share library function can be 
added to download the file from Appcelerator Cloud Services and then you can pass the 
image blob to the Facebook module for sharing.

Image Download Helper Function
The function takes an URL to download and a path to save the file. Since in some scenarios, 
there is no need to save the file, the application just needs the blob. The function will return the 
blob only if there is no _path specified when calling the function. The object returned from the 
callback will contain success as true and a property blob, which will contain the image.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M274

Figure 10-3: The Facebook Feed dialog looks pretty much the same on both platforms.

The function itself makes an HTTP request to download the file. If the http.onload 
method is called, the function will write the response data to the file created based on  
the _path parameter and the applicationDataDirectory. If the application does not 
specify a _path parameter, the response data will be returned as a blob.

Add this code to the sharing.js library file:

function downloadFile(url, _path, _callback) {
  Alloy.Globals.PW.showIndicator("Downloading File", true);
  _path && Ti.API.debug("downloading " + url + "  as " + _path);

  var f, fd, http;

  http = Ti.Network.createHTTPClient({
    ondatastream : function(e) {
      // update the caller with information on download

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 0 â•‡ S H A R I N G  V I A  F A C E B O O K ,  E M A I L ,  A N D  T W I T T E R 275

      if (e.progress > 0) {
        Alloy.Globals.PW.setProgressValue &&  
Alloy.Globals.PW.setProgressValue(e.progress);

      }
    }
  });

  http.open("GET", url);

  http.onload = function() {

    if (_path) {
      if (Ti.Filesystem.isExternalStoragePresent()) {
        fd = Ti.Filesystem.externalStorageDirectory;
      } else {
        // No SD or iOS
        fd = Ti.Filesystem.applicationDataDirectory;
      }

      // get the file
      f = Ti.Filesystem.getFile(fd, _path);

      // delete if already exists
      if (f.exists()) {
        f.deleteFile();
        f = Ti.Filesystem.getFile(fd, _path);
      }

      // write blob to file
      f.write(http.responseData);
      Alloy.Globals.PW.hideIndicator();

      _callback && _callback({
        success : true,
        nativePath : f.nativePath
      });

    } else {
      Alloy.Globals.PW.hideIndicator();
      // if no path, the just return the blob
      _callback && _callback({
        success : true,
        nativePath : null,
        blob : http.responseData
      });

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M276

    }

  };
  // if error return information
  http.onerror = function(e) {
    Alloy.Globals.PW.hideIndicator();
    _callback && _callback({
      success : false,
      nativePath : null,
      error : e
    });

  };

  http.send();
};

Revisiting and Refactoring the  
Progress Window Library
If you look carefully you will see that there is a new parameter added to the Alloy.
Globals.PW.showIndicator function; that parameter indicates if you want to display a 
progress bar in the view along with the message. The progress bar is used to provide feedback 
to the users when the file is being downloaded from the server. When sharing images to 
social media, the application is using a higher-resolution image than what is displayed on the 
devices, so there will be a noticeable delay in the application. Providing the users with a 
visual cue that there is a long-running task is just good design.

To support this new parameter, you will need to make some changes to the progressâ•‰
Window.js library. When the parameter is set to true, you will display the progress bar 
instead of just loading a message. To support the progress bar, you also need to include a 
method to update the progress as the file is downloaded; the setProgressValue method 
is provided for that purpose.

Replace the contents of the file with the following listing; the change to the library impacted 
all the methods:

var activityIndicator, showingIndicator,
    activityIndicatorWindow, progressTimeout;
var androidContainer = null;

exports.showIndicator = function(_messageString, _progressBar) {

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 0 â•‡ S H A R I N G  V I A  F A C E B O O K ,  E M A I L ,  A N D  T W I T T E R 277

  // if Android, we need a container for the progress bar to 
  // make it more visible
  if (OS_ANDROID) {
    androidContainer = Ti.UI.createView({
      top : "200dp",
      width : Ti.UI.FILL,
      height : Ti.UI.SIZE,
      opacity : 1.0,
      backgroundColor : 'black',
      color : 'black',
      visible : true
    });
  }

  activityIndicatorWindow = Titanium.UI.createWindow({
    top : 0,
    left : 0,
    width : "100%",
    height : "100%",
    backgroundColor : "#58585A",
    opacity : .7,
    fullscreen : true
  });

  if (_progressBar === true) {
    // adjust spacing, size and color based on platform
    activityIndicator = Ti.UI.createProgressBar({
      style : OS_IOS && Titanium.UI.iPhone.ProgressBarStyle.PLAIN,
      top : ( OS_IOS ? "200dp" : '10dp'),
      bottom : ( OS_ANDROID ? '10dp' : undefined),
      left : "30dp",
      right : "30dp",
      min : 0,
      max : 1,
      value : 0,
      message : _messageString || "Loading, please wait.",
      color : "white",
      font : {
        fontSize : '20dp',
        fontWeight : "bold"
      },
      opacity : 1.0,
      backgroundColor : ( OS_ANDROID ? 'black' : 'transparent')

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M278

    });
  } else {
    activityIndicator = Ti.UI.createActivityIndicator({
      style : OS_IOS ? Ti.UI.iPhone.ActivityIndicatorStyle.BIG : 
Ti.UI.ActivityIndicatorStyle.BIG,

      top : "10dp",
      right : "30dp",
      bottom : "10dp",
      left : "30dp",
      message : _messageString || "Loading, please wait.",
      color : "white",
      font : {
        fontSize : '20dp',
        fontWeight : "bold"
      },
    });
  }

  // if Android, you need to account for a container when
  // setting up the window for display
  if (OS_ANDROID) {
    androidContainer.add(activityIndicator);
    activityIndicatorWindow.add(androidContainer);
    activityIndicatorWindow.open();
  } else {
    activityIndicatorWindow.add(activityIndicator);
    activityIndicatorWindow.open();
  }

  activityIndicator.show();
  showingIndicator = true;

  // safety catch all to ensure the screen clears
  // after 25 seconds
  progressTimeout = setTimeout(function() {
    exports.hideIndicator();
  }, 35000);
};

exports.setProgressValue = function(_value) {
  activityIndicator && activityIndicator.setValue(_value);
};

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 0 â•‡ S H A R I N G  V I A  F A C E B O O K ,  E M A I L ,  A N D  T W I T T E R 279

exports.hideIndicator = function() {

  if (progressTimeout) {
    clearTimeout(progressTimeout);
    progressTimeout = null;
  }

  if (!showingIndicator) {
    return;
  }

  activityIndicator.hide();

  // if android, you need to account for a container when
  // cleaning up the window
  if (OS_ANDROID) {
    androidContainer.remove(activityIndicator);
    activityIndicatorWindow.remove(androidContainer);
    androidContainer = null;
  } else {
    activityIndicator &&  
activityIndicatorWindow.remove(activityIndicator);

  }
  activityIndicatorWindow.close();
  activityIndicatorWindow = null;

  // clean up variables
  showingIndicator = false;
  activityIndicator = null;
};

Sharing to a Facebook Album
Now that the application has a way to get the image as a blob, the way to upload the image to 
the user’s Facebook account is simply to call the proper Facebook Graph API calls.

function shareFacebookPhoto(_model) {

  var dataModel = _model.attributes;
  var message;

  // get image as blob, null passed for _path
  downloadFile(dataModel.urls.original, null, function(_data) {

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M280

    if (_data.success === false) {
      alert("Error downloading file for sharing");
      return;
    }

    message = dataModel.title;
    message += "\nfrom ACS & Alloy Sample App";

    var data = {
      message : message,
      picture : _data.blob,
    };

    Alloy.Globals.PW.showIndicator("Uploading File to Facebook", 
false);

    // Now post the downloaded photo
    Alloy.Globals.FB.requestWithGraphPath('me/photos', data, 
'POST', function(e) {

      Alloy.Globals.PW.hideIndicator();
      if (e.success) {
        alert("Success! From Facebook: ");
      } else {
        if (e.error) {
          alert('Error Posting Photo to Album ' + e.error);
        } else {
          alert("Unknown result");
        }
      }

    });
  });
}; 

Sharing an Image as an Email Attachment
Sharing the image as an email attachment requires that there is an email account configured 
on the device.

The Appcelerator Titanium Framework provides API access to an email dialog box that will 
present the user with the platform-specific interface for sending email messages. Using this 
API, the application will prepopulate the mail message with some content from the photo 
model and provide the attachment of the original photo along with a link to the photo.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 0 â•‡ S H A R I N G  V I A  F A C E B O O K ,  E M A I L ,  A N D  T W I T T E R 281

This email dialog requires that the device is configured for mail, so the first check is to con-
firm mail is available.

The application will send HTML-formatted mail so when the emailDialog is initialized the 
HTML property is set to true.

The download helper function discussed in the previous section will be utilized in this attach-
ment function since the attachment is read from a file to be associated with the email.

All of the additional fields are retrieved from the photo model that is passed to the function 
from the click event handler.

function shareWithEmailDialog(_model) {

  var dataModel = _model.attributes;

  var emailDialog = Ti.UI.createEmailDialog({
    html : true
  });

  if (emailDialog.isSupported() === false) {
    alert("Email is not configured for this device");
    return;
  }

  emailDialog.subject = " Wiley ACS & Alloy Sample App";
  emailDialog.messageBody = '<html>' + dataModel.title + '<br/>';
  emailDialog.messageBody += '<a href="' + dataModel.urls.original;
  emailDialog.messageBody += '">Link to original image</a>';
  emailDialog.messageBody += '</html>';

  downloadFile(_model.attributes.urls.original, "temp.jpeg", 
function(_data) {

    if (_data.success === false) {
      alert("Error downloading file\n Image not shared!");
      return;
    }

    var f = Ti.Filesystem.getFile(_data.nativePath);
    emailDialog.addAttachment(f);

    emailDialog.addEventListener("complete", function(_event) {
      if (e.result === emailDialog.SENT) {

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M282

        alert('Message Successfully Sent!');
      }
    });

    emailDialog.open();

  });

When you run the code for the email attachment, the iOS experience looks similar to 
Figure 10-4.

Figure 10-4: Adding an email attachment looks pretty much the same on both platforms.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 0 â•‡ S H A R I N G  V I A  F A C E B O O K ,  E M A I L ,  A N D  T W I T T E R 283

The experience on Android is a bit different since the API is using intents, so you are given a 
list of applications that support sharing of the image. If you select the email options, your 
experience should be similar to Figures 10-5 and 10-6.

Figure 10-5: Email sharing experience on Android.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M284

Figure 10-6: Email sharing experience on Android when Gmail is selected.

Twitter Integration with the social.js Module
When Alloy was first released, there was a sample application written for Appcelerator’s 
Developer Conference CODESTRONG 2012, which demonstrated the early potential of the 
Alloy Framework. In that application there was a module called social.js, which demon-
strated Twitter integration with Appcelerator using the REST APIs from Twitter. Since the 
release of that application, Twitter has changed the way images are posted to its service, so 
the module no longer works.

In the following section, code is presented that will allow for the social.js module to be 
modified to support uploading images to Twitter. This section is not intended to be a com-
prehensive overview of the code in the social.js library, but to demonstrate integrating 
Twitter in an Appcelerator Titanium Alloy application using JavaScript APIs.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 0 â•‡ S H A R I N G  V I A  F A C E B O O K ,  E M A I L ,  A N D  T W I T T E R 285

Setting Up Your Twitter Developer Account
To create a Twitter Developer Account, log in to https://dev.twitter.com/ and select 
Create a New App. Follow the instructions and create your application. Take note of the keys 
generated by the application. You will need to use the consumer key and secret key to add to 
your tiapp.xml, because this is how the application will interact with Twitter to validate 
the user’s credentials and provide access to the Twitter API on the user’s behalf. Copy the 
keys and paste the credentials to tiapp.xml as follows:

<property name="twitter.consumerKey">wNuaWTd7whh43kjHGA</property>
<property name="twitter.consumerSecret">Al0unUGyANSLEpU</property>

Adding social.js to Your Project
The social.js library can be found in the Appcelerator Alloy Github repository located at 
https://github.com/appcelerator/alloy/blob/master/Alloy/builtins/

social.js. Download the file to the library directory of your project and save.

TIPI suggest renaming the social.js library file so you know you are working with a modified 
copy; in this example, the file has been renamed social_wiley.j.

Android issues with social_wiley.js animation were resolved by making additional 
changes to the file. Change the code on line 510 to the following:

  opacity : Ti.Android ? 1 : 0,

Change the code on line 560 to the following:

  !Ti.Android && animation.popIn(window); 

Adding the shareImage Function
The current version of social.js does not support uploading images with Twitter, so this is 
the new functionality that you will be adding. The application needs to implement the image 
upload API call from the Twitter v1 SDK. The full documentation on the API call is available at 
https://dev.twitter.com/docs/api/1.1/post/statuses/update_with_media.

You should add the following code to the social_wiley.js file in the lib directory of 
your application. The code will create the proper oAuth POST request to the Twitter servers 
to upload the image for sharing using your Twitter credentials.

www.it-ebooks.info

https://dev.twitter.com/
https://github.com/appcelerator/alloy/blob/master/Alloy/builtins/social.js
https://github.com/appcelerator/alloy/blob/master/Alloy/builtins/social.js
https://dev.twitter.com/docs/api/1.1/post/statuses/update_with_media
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M286

this.sendTwitterImage = function(options) { 
    var pUrl =  
"https://api.twitter.com/1.1/statuses/update_with_media.json";

    var pTitle = options.title;
    var pSuccessMessage = options.onSuccess;
    var pErrorMessage = options.onError;
    if (accessToken == null || accessTokenSecret == null) {
        Ti.API.debug("The client doesn't have an access token");
        return;
    }
    accessor.tokenSecret = accessTokenSecret;
    var message = createMessage(pUrl);

    message.parameters.push(["oauth_token", accessToken]);
    message.parameters.push(["oauth_timestamp",
                                          OAuth.timestamp()]);
    message.parameters.push(["oauth_nonce", OAuth.nonce(42)]);
    message.parameters.push(["oauth_version", "1.0"]);

    OAuth.SignatureMethod.sign(message, accessor);
    var parameterMap = OAuth.getParameterMap(message.parameters);
    client = Ti.Network.createHTTPClient({
        onload : function() {
           if (client.status == 200) {
              pSuccessMessage && pSuccessMessage(this.responseText)
           } else {
              pErrorMessage && pErrorMessage(this.responseText);
           }
        },
        onerror : function() {
            Ti.API.error("Social.js: FAILED to send a request!");
            Ti.API.error(this.responseText);
            pErrorMessage && pErrorMessage(this.responseText);
        }
    });
    client.open("POST", pUrl);

    header = OAuth.getAuthorizationHeader("", message.parameters);
    client.setRequestHeader("Authorization", header);
    if (!Ti.Android) {
        client.setRequestHeader("Content-Type",
                                          "multipart/form-data");
        }

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 0 â•‡ S H A R I N G  V I A  F A C E B O O K ,  E M A I L ,  A N D  T W I T T E R 287

        client.send(options.params);
    };
}, 

Next, the library exposes the shareImage function in the same manner that the share 
function is exposed. The user’s authentication status must be verified before the image can 
be uploaded; library already has the functionality provided through the authorize func-
tion, which will display the Twitter mobile web authentication user interface. If authoriza-
tion is successful, the anonymous callback function will execute the sendTwitterImage 
function using the values passed in the options parameter.

shareImage : function(options) {
    this.authorize(function() {
        adapter.sendTwitterImage({
            params : {
                media : options.image,
                status : options.message,
            },
            title : "Twitter",
            onSuccess : options.success,
            onError : options.error
        });
    });
}

Including the social.js Library in the Application
Now that social_wiley.js is properly set up, the application can utilize the functions to 
share the photos on Twitter. Open the alloy.js file and add the code to load social_
wiley.js to the library, right below the code for initializing Facebook.

// if twitter is not loaded/initialized
if (!Alloy.Globals.TW) {
  var TAP = Ti.App.Properties;
  Alloy.Globals.TW = require('social_wiley').create({
    consumerSecret : TAP.getString('twitter.consumerSecret'),
    consumerKey : TAP.getString('twitter.consumerKey')
  });
}

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M288

Adding Functionality to the sharing.js Library
Modify the sharingOptions function in the sharing.js library to include the Twitter 
option and connect the optionsDialog event to the new shareTwitterPhoto function:

exports.sharingOptions = function(_options) {

  var dialog, params;

  if (OS_ANDROID) {
    params = {
      options : ['Facebook Feed', 'Facebook Photo',
                 'Twitter', 'Email'],
      buttonNames : ['Cancel'],
      title : 'Share Photo'
    };
  } else {
    params = {
      options : ['Facebook Feed', 'Facebook Photo',
                          'Twitter', 'Email', 'Cancel'],
      cancel : 4,
      title : 'Share Photo'
    };
  }

  dialog = Titanium.UI.createOptionDialog(params);
  // add event listener
  dialog.addEventListener('click', function(e) {

    // user clicked cancel
    if (OS_ANDROID && e.button) {
      return;
    }

    if (e.index === 0) {
      prepForFacebookShare(function() {
        shareWithFacebookDialog(_options.model);
      });
    } else if (e.index === 1) {
      prepForFacebookShare(function() {
        shareFacebookPhoto(_options.model);
      });
    } else if (e.index === 2) {
      shareTwitterPhoto(_options.model);

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 0 â•‡ S H A R I N G  V I A  F A C E B O O K ,  E M A I L ,  A N D  T W I T T E R 289

    } else if (e.index === 3) {
      shareWithEmailDialog(_options.model);
    }
  });

  // show the dialog
  dialog.show();

};

The shareTwitterPhoto function is structured the same as the other sharing photo func-
tions that require the image to be downloaded before sharing to social media. The applica-
tion downloads the image from the server and then passes the blob—along with the 
additional text for the status message to be associated with the tweet—to the exposed 
Twitter API call from the social.js library.

function shareTwitterPhoto(_model) {
    var dataModel = _model.attributes;

    var twitter = Alloy.Globals.TW;

    downloadFile(dataModel.urls.iphone, null, function(_data) {

        if (_data.success === false) {
            alert("error downloading file");
            return;
        }
        twitter.shareImage({
            message : dataModel.title + " #tialloy",
            image : _data.blob,
            success : function() {
                Ti.UI.createAlertDialog({
                    title : 'Sample Alloy & ACS App',
                    message : "Tweeted successfully!",
                    buttonNames : ['OK']
                }).show();
            },
            error : function() {
                Ti.UI.createAlertDialog({
                    title : 'Sample Alloy & ACS App',
                    message : 'Unable to post your tweet.',
                    buttonNames : ['OK']

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M290

                }).show();
            }
        })
    },
    // update the UI progress indicator
    function(e) {
        progressIndicator && (progressIndicator.value
                              = e.progress);
    });
}

Summary
Sharing is an essential feature in many mobile applications; it leverages the network effect to 
promote the application through popular social media applications and email. The 
Appcelerator Titanium Framework makes it easy to quickly integrate this sharing functional-
ity with a popular framework like Facebook. The Twitter integration is a bit more challeng-
ing, but it shows how flexible the Appcelerator Titanium Framework is in adopting standard 
REST-based APIs and other JavaScript-based libraries. Also note that this integration is 
cross-platform and that you have very quickly integrated Twitter and Facebook sharing using 
JavaScript.

The introduction of some helper functions like the downloadFile and the progressâ•‰
Indicator supporting functions continue to demonstrate the powerful combination of the 
Appcelerator Framework and a language like JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 11
Push Notif icat ions

INTEGRATING PUSH NOTIFICATIONS into your application will allow the sending and 
receiving of messages, called notifications, to and from your application. The messages are 
sent to the specific device, so it does not necessarily require your application to be in the 
foreground for the message to be received. The application can then take a specific, pre-
defined action based on receiving the notification.

iOS and Android mobile operating systems both support this functionality, although their 
implementations differ. Your application, if iOS-based, will receive notifications from the 
Apple Push Notifications (APN) service. If your application is Android-based, it will receive 
push notifications through the Google Cloud Messaging (GCM) service.

■	 Find more about Google Cloud Messaging (GCM) at http://developer.android.
com/google/gcm/index.html.

■	 For more about Apple’s push notifications, visit https://developer.apple.com/
library/ios/documentation/NetworkingInternet/Conceptual/

RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_

ref/doc/uid/TP40008194-CH100-SW9.

The Appcelerator Cloud Services Push Notifications API provides a user session or a device 
token-based solution for notifications. In this application, you will be using the push func-
tionality that requires the user to be logged in to receive notifications. You will integrate this 
into the login process to register for notifications and the logout process for unregistering 
the user.

www.it-ebooks.info

http://developer.android.com/google/gcm/index.html
http://developer.android.com/google/gcm/index.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW9
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW9
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW9
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW9
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M292

Setting Up Push Notifications on 
Your Development Platform
This section covers the process of setting up push notifications on the Apple and Google 
development platforms.

Apple Push Notifications Configuration
For configuring your IOS application with Appcelerator Cloud Services for Push Notifications, 
you need an App ID that has been configured to support push notification services and a SSL 
Certificate and private key that will be added to the Push Notification server. The Appcelerator 
Cloud Services App Dashboard will provide the interface to enter the private key 
information.

Setting up your App ID and obtaining the SSL certificate and private key are beyond the 
scope of this book and are covered in the Appcelerator documentation. Follow the steps out-
lined in that documentation and then return here to continue the configuration (see 
http://docs.appcelerator.com/cloud/latest/#!/guide/ios-section- 

push-notification).

Google Push Notifications Configuration
To configure your Android application with Appcelerator Cloud Services for Push NotifiÂ�
cations, you will be using Google Cloud Messaging. To use Google Cloud Messaging, you 
need a Google Cloud Messaging Project ID and a Google Cloud Messaging API key associated 
with the Project ID.

Setting up your Google Cloud Messaging Project ID and obtaining the Google Cloud 
Messaging API key are beyond the scope of this book and are covered in the Appcelerator 
documentation. Follow the steps outlined in that documentation and then return here to 
continue the Â�configuration (see http://docs.appcelerator.com/cloud/latest/ 
#!/api/PushNotifications).

Configuring Push Notifications in  
Appcelerator Cloud Services
After you have followed the directions based on the specific platform, your Appcelerator 
Cloud Services Dashboard should look similar to Figure  11-1. Remember that if you are 
building an Android application, you are using Google Cloud Messaging in your app, not 
MqTT.

www.it-ebooks.info

http://docs.appcelerator.com/cloud/latest/#!/guide/ios-section-push-notification
http://docs.appcelerator.com/cloud/latest/#!/guide/ios-section-push-notification
http://docs.appcelerator.com/cloud/latest/#!/api/PushNotifications
http://docs.appcelerator.com/cloud/latest/#!/api/PushNotifications
http://www.it-ebooks.info/


C H A P T E R  1 1 â•‡ P U S H  N O T I F I C A T I O N S 293

Figure 11-1: ACS app console configuration for push notifications.

After this you should be ready to start writing some code.

Creating the Push Notifications  
Library in an Application
If you are building an Android application, you need to include the ti.cloudpush module 
in your application. To add another module to your application, open your project in 
Titanium Studio and double-click on the tiapp.xml file in the project browser (see 
Figure 11-2).

Click the green plus to add a new module to the application, then selected the ti.cloudpush 
module from the list of available modules. Figure 11-3 shows the list of available modules.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M294

Figure 11-2: The tiapp.xml properties editor.

Figure 11-3: A list of modules with ti.cloudpush selected.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 1 â•‡ P U S H  N O T I F I C A T I O N S 295

This module is only used to receive the push notifications, sending notifications is handled 
by the Appcelerator Cloud services default framework. Additional information on the cloud 
push module is available at http://docs.appcelerator.com/titanium/latest/#!/
api/Titanium.CloudPush.

Creating the pushNotifications.js Library
Create a new library file called pushNotifications.js and add the new file to your proj-
ect’s lib directory; the lib folder should be placed inside of the app folder in the project 
directory.

The first thing you need to do in your library is provide the cross-platform support by includ-
ing the Android push library. You will also need to add the Appcelerator Cloud Services 
library to make the push notification API calls. The Android library is needed for receiving 
notifications, not sending them.

var Cloud = require('ti.cloud');
var AndroidPush = OS_ANDROID ? require('ti.cloudpush') : null;

Next you will add the key functions that are needed to support push notifications. You can 
start with registering the device to receive notifications. To register to receive notifications, 
you need to get a token from the notification server provided by Appcelerator Cloud Services. 
Since the IOS and Android approaches are slightly different, they will be covered separately.

Getting the iOS Token
It’s important to add a check at the start of the initialization function to alert the users that 
push notifications work only on a physical device and not in the simulator.

The initialization function requires the user object, since that is how you are implementing 
push in this application, requiring a user and not token-based push. You are providing a call-
back method, _pushRcvCallback, to be called when the application receives a push notifi-
cation; it is in the foreground. The initialization callback, _callback, lets the caller know 
whether the call was successful or not.

The main call to get the device token on iOS is Ti.Network.registerForPush 
Notifications.

Seeâ•‡  http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Network- 
method-registerForPushNotifications for more information.

Your pushNotifications.js lib file should look like this after you add the framework 
code for supporting iOS devices.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.CloudPush
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.CloudPush
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Network-method-registerForPushNotifications
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Network-method-registerForPushNotifications
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M296

exports.initialize = function(_user, _pushRcvCallback, _callback) {

  USER_ID = _user.get("id");

  if (Ti.Platform.model === 'Simulator') {
    alert("Push ONLY works on Devices!");
    return;
  }

  // only register push if we have a user logged in
  var userId = _user.get("id");

  if (userId) {

    if (OS_ANDROID) {
      // ANDROID SPECIFIC CODE GOES HERE
    } else {
      Ti.Network.registerForPushNotifications({
        types : [Ti.Network.NOTIFICATION_TYPE_BADGE,
                 Ti.Network.NOTIFICATION_TYPE_ALERT,
                 Ti.Network.NOTIFICATION_TYPE_SOUND
               ],
        success : function(_data) {
          pushRegisterSuccess(userId, _data, _callback);
        },
        error : function(_data) {
          pushRegisterError(_data, _callback);
        },
        callback : function(_data) {
          // what to call when push is received
          _pushRcvCallback(_data.data);
        }
      });
    }
  } else {
    _callback && _callback({
      success : false,
      msg : 'Must have User for Push Notifications',
    });
  }
};

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 1 â•‡ P U S H  N O T I F I C A T I O N S 297

Getting the Android Token
The push notification library you included is well documented by Appcelerator at http://
docs.appcelerator.com/titanium/latest/#!/api/Titanium.CloudPush.

For this application, you will include the same code inside the Android conditional of the if 
statement in the initialization function listed previously. You will perform some additional 
Android-specific configuration upon success of retrieveDeviceToken to properly config-
ure push notifications on the Android devices.

After the Android-specific calls, the application will then call the same callback as the iOS branch 
conditional. Remember to call pushRegisterSuccess the same way you did in the iOS code 
because the pushRegisterSuccess call subscribes the user to the proper channels.

Add the following code to the pushNotifications.js file where the comment place-
holder currently exists:

// reset any settings
AndroidPush.clearStatus();

// set some properties
AndroidPush.debug = true;
AndroidPush.showTrayNotificationsWhenFocused = true;

AndroidPush.retrieveDeviceToken({
  success : function(_data) {
    Ti.API.debug("received device token", _data.deviceToken);

    // what to call when push is received
    AndroidPush.addEventListener('callback', _pushRcvCallback);

    // set some more properties
    AndroidPush.enabled = true;
    AndroidPush.focusAppOnPush = false;

    pushRegisterSuccess(userId, _data, function(_response) {
      // save the device token locally
      Ti.App.Properties.setString('android.deviceToken',  
_data.deviceToken);

      
      _callback(_response);
    });
  },

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.CloudPush
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.CloudPush
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M298

  error : function(_data) {
    AndroidPush.enabled = false;
    AndroidPush.focusAppOnPush = false;
    AndroidPush.removeEventListener('callback', _pushRcvCallback);

    pushRegisterError(_data, _callback);
  }
});

Registering Callbacks
The pushRegisterSuccess and pushRegisterError functions handle the success or 
error response from the attempt to get a device token. They are abstracted into separate 
functions so they can be used to support the Android and the iOS implementation without 
code duplication.

You can start with the error callback from the call to Ti.Network.registerForPush 
Notifications since it is quite simple; all you are doing here is responding to the caller 
with the error information returned from the Appcelerator Cloud Services call and setting 
the success flag on the returned object.

function pushRegisterError(_data, _callback) {
  _callback && _callback({
    success : false,
    error : _data
  });
}

The success callback is a bit more complex since you want to accomplish a few other things. 
With push notifications, the user or device can subscribe to specific channels in the push 
notification service.

In this application you have two types of channels—the friends channel, which is how you 
will notify individuals of specific actions taken by their friends and two platform-specific 
channels that are created for sending platform-specific notifications. The platform channel is 
included to demonstrate possibilities with this Appcelerator Cloud Service functionality.

The success callback function is passed the data from the Ti.Network.registerFor 
PushNotifications call and a callback parameter.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 1 â•‡ P U S H  N O T I F I C A T I O N S 299

Next in the success callback, you will first unsubscribe the user and the device from any 
channels it was previously subscribed to. This is necessary because Android will continue to 
generate a unique device token and there will be multiple push notifications sent to the same 
device.

After the cleanup is completed, you then subscribe the user to the friend channel, which is 
used for the communication between the users of the application.

The code is listed here:

function pushRegisterSuccess(_userId, _data, _callback) {

  var token = _data.deviceToken;

  // clean up any previous registration of this device 
  // using saved device token
  Cloud.PushNotifications.unsubscribe({
    device_token :  
Ti.App.Properties.getString('android.deviceToken'),

    user_id : _userId,
    type : (OS_ANDROID) ? 'android' : 'ios'
  }, function(e) {

    exports.subscribe("friends", token, function(_resp1) {

      // if successful subscribe to the platform-specific channel
      if (_resp1.success) {

        _callback({
          success : true,
          msg : "Subscribe to channel: friends",
          data : _data,
        });
      } else {
        _callback({
          success : false,
          error : _resp2.data,
          msg : "Error Subscribing to channel: friends"
        });
      }
    });
  });
}

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M300

This code uses the exports.subscribe function to subscribe to push notification channels. 
The code for this function is pretty straightforward and similar to the Appcelerator Cloud 
Services documentation for subscribing to a channel, which you can find at http://docs.
appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Push 

Notifications.

There is one difference you will notice, which is that in this code you will be specifying the 
type when you make the function call. The type property will be either ios or gcm, depend-
ing on your platform implementation. The code in the library is written to be cross-platform 
so following this approach will get you the best results.

exports.subscribe = function(_channel, _token, _callback) {
  Cloud.PushNotifications.subscribe({
    channel : _channel,
    device_token : _token,
    type : OS_IOS ? 'ios' : 'android'
  }, function(_event) {

    var msgStr = "Subscribed to " + _channel + " Channel";
    Ti.API.debug(msgStr + ': ' + _event.success);

    if (_event.success) {
      _callback({
        success : true,
        error : null,
        msg : msgStr
      });

    } else {
      _callback({
        success : false,
        error : _event.data,
        msg : "Error Subscribing to All Channels"
      });
    }
  });
};

Integrating Push in Your Application
Now that you have created the pushNotifications.js library, you can test the configu-
ration after adding the device token and the registration process to the user login functional-
ity. Since Appcelerator Cloud Services application console provides a push notification 
console, you can send a push to all registered devices as the administrator.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.PushNotifications
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.PushNotifications
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.PushNotifications
http://www.it-ebooks.info/


C H A P T E R  1 1 â•‡ P U S H  N O T I F I C A T I O N S 301

Registering for Push Notifications  
When the User Logs In
First you need to include the newly created library, pushNotifications, in the index.js 
file so you can access the initialization function.

You will create a new function to initialize the push and separate out the functionality. You’ll 
add the initializing function to the index.js function called $.loginSuccessAction.

The code should look something like this (the code has been edited for brevity):

$.loginSuccessAction = function(_options) {
    initializePushNotifications(_options.model);

    the original code would follow here...
}

You add the function called initializePushNotifications, which requires the param-
eter of the user model from the successful login in the application.

You will create a global variable to hold the device token from the pushNotifications 
that you can use as a flag to ensure notifications have been initialized. After this setup, you 
call the function and specify first the callback, which indicates that there was a successful 
push received, and then the final parameter in the error callback, which is called when an 
error occurs.

The following example will display a simple alert showing the payload from the test push 
notification. Add this function to the index.js controller file of your application:

function initializePushNotifications(_user) {

  Alloy.Globals.pushToken = null;
  var pushLib = require('pushNotifications');

  // initialize PushNotifications
  pushLib.initialize(_user,
  // notification received callback
  function(_pushData) {
    Ti.API.info('I GOT A PUSH NOTIFICATION');
    // get the payload from the proper place depending
    // on what platform you are on
    var payload;

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M302

    try {
      if (_pushData.payload) {
        payload = JSON.parse(_pushData.payload);
      } else {
        payload = _pushData;
      }
    } catch(e) {
      payload = {};
    }

    // display the information in an alert
    if (OS_ANDROID) {
      Ti.UI.createAlertDialog({
        title : payload.android.title || "Alert",
        message : payload.android.alert || "",
        buttonNames : ['Ok']
      }).show();
    } else {
      Ti.UI.createAlertDialog({
        title : "Alert",
        message : payload.alert || "",
        buttonNames : ['Ok']
      }).show();
    }

  },
  // registration callback parameter
  function(_pushInitData) {
    if (_pushInitData.success) {
      // save the token so we know it was initialized
      Alloy.Globals.pushToken = _pushInitData.data.deviceToken;
      
      Ti.API.debug("Success: Initializing Push Notifications " + 
JSON.stringify(_pushInitData));

    } else {
      alert("Error Initializing Push Notifications");
      Alloy.Globals.pushToken = null;
    }
  });
}

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 1 â•‡ P U S H  N O T I F I C A T I O N S 303

Sending Notifications Using the Appcelerator  
Cloud Services Console
To test the code you have written so far, open the Appcelerator Cloud Services dashboard 
and go to the application you have created (see https://my.appcelerator.com/apps).

Select the app you have created. Make sure you are looking at the development configuration 
and then click the Send Push Notification button, as shown in Figure 11-4.

Figure 11-4: Console to select push notifications.

www.it-ebooks.info

https://my.appcelerator.com/apps
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M304

Enter information into the displayed form to send a test push notification. To see the same 
results as the screenshots included, enter the same content. You will only be sending simple 
text notifications, so make sure the “standard” configuration is set.

Click the Send Push Notification button and your device. If it’s running, you should receive a 
notification alert that looks similar to the one shown in Figures 11-5 and 11-6.

Figure 11-5: Screenshot with test notification alert displayed on iOS.

Sending a Push Notification
To send a push notification, you will add another function to the pushNotifications.js 
library. This function will closely follow the documented notify function, which can be found 
in the Appcelerator Cloud Services documentation—see http://docs.appcelerator.
com/titanium/latest/#!/api/Titanium.Cloud.PushNotifications.

You will wrap the function so it can support sending notifications to specific user(s) or send-
ing a notification to all users. The sendPush function takes a parameter named _params, 
which is a JavaScript hash with specific properties based on the functionality you desire. 
The _params hash contains the specific user_id of the user if the notification is only for a 
specific user. The _params hash contains the property friends if the notification is to be 
sent to all users who have subscribed to the friends channel.

The function also verifies there is a valid deviceToken set before attempting to send the 
notification. Add the following code to the pushNotifications library so you can send 
messages based on user actions in the application.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.PushNotifications
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.PushNotifications
http://www.it-ebooks.info/


C H A P T E R  1 1 â•‡ P U S H  N O T I F I C A T I O N S 305

Figure 11-6: Screenshot with test notification alert displayed on Android.

exports.sendPush = function(_params, _callback) {

  if (Alloy.Globals.pushToken === null) {
    _callback({
      success : false,
      error : "Device Not Registered For Notifications!"
    });
    return;
  }

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M306

  // set the default parameters, send to
  // user subscribed to friends channel
  var data = {
    channel : 'friends',
    payload : _params.payload,
  };

  // add optional parameter to determine if it should be 
  // sent to all friends or to a specific friend
  _params.friends && (data.friends = _params.friends);
  _params.to_ids && (data.to_ids = _params.to_ids);

  Cloud.PushNotifications.notify(data, function(e) {
    if (e.success) {
      // it worked
      _callback({
        success : true
      });
    } else {
      var eStr = (e.error && e.message) || JSON.stringify(e);
      Ti.API.error(eStr);
      _callback({
        success : false,
        error : eStr
      });
    }
  });
};

Sending a Notification When Posting a Photo
When the current user takes a new photo, the application will send a push notification to all 
of the current user’s friends to let them know a new photo has been posted.

For this to work properly, you need to get the friends list from the user so you can send a 
notification to all of the user’s friends. You will use the function getFollowers from the 
user model for just this purpose. After you have retrieved the user’s friends list, you can send 
the notification message using the exported function.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 1 â•‡ P U S H  N O T I F I C A T I O N S 307

Add the following function to the feed.js controller:

// get all of my friends/followers
function notifyFollowers(_model, _message) {
  
  var currentUser = Alloy.Globals.currentUser;
  
  currentUser.getFollowers(function(_resp) {
    if (_resp.success) {
      $.followersList = _.pluck(_resp.collection.models, "id");

      // send a push notification to all friends
      var msg = _message + " " + currentUser.get("email");

      // make the api call using the library
      push.sendPush({
        payload : {
          custom : {
            photo_id : _model.get("id"),
          },
          sound : "default",
          alert : msg
        },
        to_ids : $.followersList.join(),
      }, function(_responsePush) {
        if (_responsePush.success) {
          alert("Notified friends of new photo");
        } else {
          alert("Error notifying friends of new photo");
        }
      });
    } else {
      alert("Error updating friends and followers");
    }
  });

}

At the top of the feed.js file, you need to include the following statement to get access to 
the pushNotifications.js library.

var push = require('pushNotifications');

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M308

In the function processImage in the success callback for the photo.save function, you 
can now call the notifyFollowers function to let followers know a new photo has been 
published. Add the function call at the end of the success if-statement; the added code 
should be as follows:

notifyFollowers(_photoResp.model, "New Photo Added");

Now when the user takes a photo, a push notification will be sent to all her followers. They will 
receive an alert that looks similar to the one shown in Figure 11-7, if the application is active.

Figure 11-7: The Android application alert.

If the application is not active, the user will receive a system notification that looks similar to 
the one shown in Figure 11-8.

Sending a Notification When Commenting on Photos
When the user comments on a photo, the application will send a push notification to the 
owner of the photo to let her know that someone has commented on the photo. You need to 
get the ID of the owner of the photo so you can send a notification to that specific user.

At the top of the comment.js file, you will need to include the following statement to get 
access to the pushNotifications.js library:

var push = require('pushNotifications');

The following code should be added to the comment.js controller in the addComment func-
tion call, where the user saves the comment. In the success callback from saving the new 
comment model object, you will then send a push notification to the owner of the photo 
informing her that a new comment has been added.

notifyFollowers(_model, currentPhoto, "New comment posted by");

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 1 â•‡ P U S H  N O T I F I C A T I O N S 309

Figure 11-8: The Android system notification center.

The notifyFollowers function is added to the comments.js file to send the push notifi-
cation about the new comment added, as follows:

function notifyFollowers(_model, _photo, _message) {
  var currentUser = Alloy.Globals.currentUser;

  push.sendPush({
    payload : {
      custom : {
        from : currentUser.get("id"),
        commentedOn : _photo.id,
        commentedId : _model.id,
      },

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M310

      sound : "default",
      alert : _message + " " + currentUser.get("email")
    },
    to_ids : _photo.get("user").id
  }, function(_responsePush) {
    if (_responsePush.success) {
      alert("Notified user of new comment");
    } else {
      alert("Error notifying user of new comment");
    }

  });
}

Figure 11-9 shows the iOS alert when a comment is added and Figure 11-10 shows the iOS 
Notification Center.

Sending a Notification When Adding a New Friend
When a user selects a new friend, the application will send a push notification to the new 
friend to let them know someone is now following their new posts. You need to get the ID of 
the user who is selected as a friend so you can send a notification to that specific user.

Figure 11-9: The iOS alert when a comment is added.

At the top of the friends.js file, you will need to include the following statement to get 
access to the pushNotifications.js library:

var push = require('pushNotifications');

To send this notification, add the following code to the friends.js controller inside the 
followBtnClicked event handler. This code is added to the success callback of the user 
model’s method followUser. You will use the user ID of the user who selected to be 

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 1 â•‡ P U S H  N O T I F I C A T I O N S 311

followed as the recipient of the push notification by setting the to_ids parameter. You can 
also see in this code that there is a simpler payload being passed in this case, just a string 
containing the message to be passed.

Figure 11-10: The iOS Notification Center when a comment is added.

var currentUser = Alloy.Globals.currentUser;

push.sendPush({
  payload : {
    custom : {},
    sound : "default",
    alert : "You have a new friend! " + currentUser.get("email")
  },

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M312

  to_ids : selUser.model.id,
}, function(_responsePush) {
  if (_responsePush.success) {
    alert("Notified user of new friend");
  } else {
    alert("Error notifying user of new friend");
  }
});

Figure 11-11 shows the iOS notification when you’ve been selected as friend.

Figure 11-11: User is being notified in iOS of a new friend.

Unregistering from Push Notifications  
When Logging Out
When the user logs out of the application, the application will unregister the device from the 
push notification’s server so it will no longer receive notifications.

Create the exported pushUnsubscribe function in the pushNotifications.js library 
file in case there is a need to unsubscribe a user from a channel from outside of the library. 
This function takes a parameter called _data, which is a JavaScript hash comprised of the 
channel to unsubscribe from and the specific device token. If you look at the Appcelerator 
documentation, you will see that this is a simple wrapper around the Cloud Services API call.

You use the _callback parameter to return the response data and a response flag of suc-
cess that is set to true or false.

Add the following code to the pushNotifications.js library file; it will be used in 
Chapter 12, when you attempt to log the user out of the system.

exports.pushUnsubscribe = function(_data, _callback) {

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 1 â•‡ P U S H  N O T I F I C A T I O N S 313

    Cloud.PushNotifications.unsubscribe(_data, function(e) {
        if (e.success) {
            Ti.API.debug('Unsubscribed from: ' + _data.channel);
            _callback({
                success : true,
                error : null
            });
        } else {
            Ti.API.error('Error unsubscribing: ' + _data.channel);
            Ti.API.error(JSON.stringify(e, null, 2));
            _callback({
                success : false,
                error : e
            });
        }
    });
};

Further Integration of Push Notifications  
in Your Application
Push notifications can send payloads that contact additional information so the application 
can perform a specific action based on the notification. In the example code provided, you 
are passing photo_id when the push notification is sent, which indicates that a new photo 
has been posted. You could potentially modify the application to show the specific photo 
that has been added to the application. When a new comment notification is received, you 
could have the application open to the specific photo associated to the comment so the user 
can see the most recent comments.

These are just two examples of the increased usability that can be added to the application 
logic to enhance the capabilities of the notifications system within your application. The 
sample code provided along with this chapter is a good starting point to add similar solutions 
to the final application you decide to build.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M314

Summary
The addition of push notifications to this sample application allows for interaction between 
the application’s users and gives the users a reason to return to the application, which is criti-
cal to the success of your application.

Appcelerator Cloud Services has provided the APIs and cross-platform solution to allow you 
to seamlessly integrate the functionality into your mobile applications with minimal effort.

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 12
Sett ings  and User  Management

THE SETTINGS TAB is the final tab in the application. This tab allows the user to perform 
the following functions. This is not an exhaustive list of settings for an application like this 
but it gives you an idea of what can be accomplished using the Appcelerator framework and 
Appcelerator Cloud Services.

■	 View and update the photo associated with the account

■	 View the count of friends and followers

■	 View the count of photos uploaded

■	 Turn off friends’ push notification

■	 Log in/out of Facebook

■	 Log in/out of Twitter

Most of these features will be implemented by enhancing code that has already been written 
to provide you with additional information. There will be some enhancement to the share 
library and the push notifications library as well as an introduction to a JavaScript library q 
that can resolve common issues found when developing code with a lot of asynchronous 
callbacks.

Getting Started: View, Style, Controller
By now the process for creating windows for applications using the Alloy Framework should 
be pretty familiar to you. Let’s start by opening the settings.xml view file and adding the 
code to construct the user interface to match the wireframes created in the earlier chapters.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M316

Editing the View
First you will need to add the Logout button to the title bar for the iOS version of the application; 
remember when adding platform-specific code, you will need to specify the platform attribute in 
the view element. As a child of the window element, you will add the RightButton element.

<RightNavButton platform="ios">
    <Button id='logoutBtn'>Logout</Button>
</RightNavButton>

After the button element is added, you will start to layout the main containers of the setting 
window, the header and the mainBody, and those names will correspond to the object IDs 
you will use in the controller file, which are settings.js and the settings.tss style file. 
These two elements will be represented with views. The final element at this level of the view 
hierarchy is the Refresh button, which will be used to update the contents of the window by 
querying Appcelerator cloud services for the latest information.

After adding the code for the main views, your settings.xml file should look similar to this:

<Alloy>
    <Tab title='Settings'>
        <Window title='Settings'>
            <RightNavButton platform='ios'>
                <Button id='logoutBtn'>Logout</Button>
            </RightNavButton>
            <View id='header'>
            </View>
            <View id='mainBody'>
            </View>
            <Button id='refreshBtn'></Button>
        </Window>
    </Tab>
</Alloy>

Editing the User Information in the Header Section
First you will get all of the information on the user and display it in the header sections and then 
you will circle back and add all of the push notifications and social media settings in the view.

In the heading section, you want to display the avatar for the current user, the full name of the 
user, and Appcelerator Cloud Services information, such as the number of photos they have 
taken and the number of friends they have. You will add all of the user interface elements in 
the settings.xml file and then handle the layout and styling in the settings.tss file.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 317

For the avatar, add an ImageView element and set the ID to profileImage. Next is the 
Label element, which will hold the full name of the user and then there are labels for the 
number of photos and the number of friends that are associated with the user. In order to 
get the labels and the values lined up properly, you will wrap the title and value labels into a 
view. After adding the code to the settings.xml, the contents of the header element 
should look like this.

<ImageView id='profileImage'></ImageView>
<View id='statsBox'>
    <Label id='fullname' class='left4dp top10dp'> </Label>
    <View class='hdrBox left4dp'>
        <Label class='hdrLabel'>Photos:</Label>
        <Label class='hdrCount' id='photoCount'>0</Label>
    </View>
    <View class='hdrBox left4dp bottom10dp'>
        <Label class='hdrLabel'>Friends:</Label>
        <Label class='hdrCount' id='friendCount'>0</Label>
    </View>
</View>

Editing the User Information Style
You need to apply some styles to the elements in order to get the UI to match the mockups. 
You can always add the style information directly to the settings.xml file, but it is better 
to add the information to settings.tss.

Open the settings.tss file in the styles directory and set some basic style information on 
the high-level elements:

'View' : {
    layout : 'horizontal',  
    width : Ti.UI.FILL,
    height : Ti.UI.SIZE,
},
'Window' : {
  layout : 'vertical',
  height : Ti.UI.FILL
},
'Label' : {
  color : '#444'
}

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M318

Next, you can start to specify specific styles for the elements in the view using their IDs; this 
is done by creating a style like the following.

'#header' : {
    horizontalWrap : false
},
'#logoutBtn' : {
  bottom: '10dp'
},
'#profileImage' : {
    top : '13dp',
    left : '10dp',
    width : '100dp',
    height :'100dp',
    borderColor : '#CCC',
    border : '1dp'
},
'#statsBox' : {
    layout : 'vertical',
    top : '20dp',
    left : '5dp',
    right : '5dp',
    borderColor : '#CCC',
    borderWidth : '1dp',
    horizontalWrap : false
},
// for some reason, the 'right' property is not working on android
// https://jira.appcelerator.org/browse/TIMOB-15525
'#statsBox[platform=android]' : {
    layout : 'vertical',
    top : '20dp',
    left : '5dp',
    width : '65%',
    height : Ti.UI.SIZE,
    borderColor : '#CCC',
    borderWidth : '1dp',
    horizontalWrap : false
},
'#fullname' : {
    bottom : '2dp',
    textAlign : 'left',  
        color : '#444', 

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 319

    font : {
        fontSize : '18dp',
        fontWeight : 'bold'
    }
}

As you can see from this code, we have created an individual style setting for each of the ele-
ments in the header section of the page. For the counters, you will use style classes to control 
the layout instead of using specific styles applied based on object IDs. You will create classes 
called hdrBox, hdrLabel, and hdrCount that will be applied to the view elements to get 
the desired outcome. There are also a few helper classes you need to add to settings.tss 
to properly align the views and labels in the window. See Figures 12-1 and 12-2.

'.left4dp' : {
    left :'4dp',
},
'.top10dp' : {
    top :'10dp',
},
'.bottom10dp' : {
    bottom :'10dp',
},
'.hdrBox' : {
},
'.hdrLabel' : {
    left : '0dp',
    textAlign : 'left',    
    font : {
        fontWeight : 'bold',
        fontSize : '16dp'      
    }
},
'.hdrCount' : {
    font : {
        fontSize : '16dp',
    }
}

The refreshBtn is in the settings.xml file, so you can add the styling for that to the 
settings.tss file since it is only a few properties. You will need to include the platform-
specific styling for the height of the button on Android.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M320

'#refreshBtn' : {
    top : '50dp',
    width : '80%',
    height : '32dp',
    title : 'REFRESH COUNTS'    
},
'#refreshBtn[platform=android]' : {
    height : '42dp',
},

Figure 12-1: Screenshot of header layout on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 321

Figure 12-2: Screenshot of header layout on Android.

Handling Logout on Android and iOS
On iOS, the Logout button is available in the navigation bar to allow the users to log out of 
the application. As you have done on the Feed tab, you need to add some code to set up the 
menu on the ActionBar when the user views the Settings tab. In this menu, you will enable 
the users to log out of the application.

Add the following code to the index.js controller file inside of the activity.onCreate 
OptionsMenu handler in the function doOpen:

if ($.tabGroup.activeTab.title === "Settings") {
    menuItem = e.menu.add({

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M322

        title : "Logout",
        showAsAction : Ti.Android.SHOW_AS_ACTION_ALWAYS,
    });
    menuItem.addEventListener("click", function(e) {
        $.settingsController.handleLogoutMenuClick();
    });
} else if ($.tabGroup.activeTab.title === "Feed") {
    // remains same
} else {
    // remains same
}

This will add the menu item on the Android ActionBar in the Settings tab and assign the 
event handler for the menu selection to a function called handleLogoutMenuClick. The 
function handleLogoutMenuClick will call the same function as when the user clicks on 
the Logout button in the Settings tab’s navigation bar.

You can now start to add the basic event listeners for the buttons and window actions. To 
enable users to update their avatars by clicking on their profile images, you need to add an 
event listener for a click on the profileImage view element.

Add the following code to the settings.js controller file. You will start to fill out the code 
as you move through the remainder of the chapter.

/* EVENT HANDLERS */
/* in IOS we need to support the button click */
OS_IOS && $.logoutBtn.addEventListener("click", 
handleLogoutBtnClick);

/* listen for click on image to upload a new one */
$.profileImage.addEventListener("click", handleProfileImageClick);

/* listen for close event to do some clean up */
$.getView().addEventListener("close", closeWindowEventHandler);

/* listen for Android back event to do some clean up */
$.getView().addEventListener("androidback", 
androidBackEventHandler);

/* keep state of friends connections */
$.connectedToFriends = false;

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 323

/* keep state of initialization, this prevents the events from 
looping */

$.onSwitchChangeActive = false;

$.handleLogoutMenuClick = function(_event) {
    handleLogoutBtnClick(_event);
};

function handleLogoutBtnClick (argument) {
}

function handleProfileImageClick (argument) {
}

function closeWindowEventHandler (argument) {
}

function androidBackEventHandler (argument) {
}

Logging the User Out
Let’s start with the primary function of the Settings tab, which is to log out the user. As you 
can see, you have connected the menu click action on Android to the button click action from 
iOS. This enables you to put all of the logout functionality into the one function called 
Â�handleLogoutBtnClick. In this function you will need to do the following:

■	 Log out of ACS push notification

■	 Log out of ACS

■	 Log out of Facebook and Twitter

■	 Return the application to Login screen

Logging Out of Appcelerator Push Notifications
You will need to import the pushNotifications.js library you used in the previous 
chapter and call the logout function that was created. This logout function will unsubscribe 
the user from the friends channel and from the platform-specific channel they were sub-
scribed to when logging into the application.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M324

Logging Out from Appcelerator Cloud Services
Using the current user object global variable, Alloy.Globals.currentUser , you will call 
the extended method logout that was added to the user model. This function will call the 
Appcelerator cloud service’s API to log the user out of the API. The extended function also 
cleans up some application-specific properties, specifically the sessionId and the user 
object that is saved when the user logs in.

Logging Out from Social Media
You will need to import the sharing.js library to log the user out of all social media accounts. 
The sharing library will be modified to add a new function call named deauthorize, which 
removes the save credentials from the user’s device. This will force the user to log in again when 
restarting the application.

Open sharing.js in the lib directory and add the function using this code:

/**
 * logs out and clears out any social media information
 */
exports.deauthorize = function() {
    Alloy.Globals.TW && Alloy.Globals.TW.deauthorize();
    Alloy.Globals.FB && Alloy.Globals.FB.logout();
};

Returning to the Login Screen
Each of the tabs in the application is passed in the parent controller, index.js, which gives 
them access to important functions. One of those functions is userNotLoggedInAction. 
This function will display the login view for a user to log in to the application and is the exact 
behavior you want after the logout is completed.

Bringing all of this functionality together in the handleLogoutBtnClick function, you 
add the following code to the end of the settings.js controller file:

function handleLogoutBtnClick(_event) {

  // push logout
  require('pushNotifications').logout(function() {

    Alloy.Globals.currentUser.logout(function(_response) {
      if (_response.success) {

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 325

        Ti.API.debug('user logged out');

        // clear any twitter/FB information
        require('sharing').deauthorize();

        // show login window
        $.parentController.userNotLoggedInAction();

      } else {
        Ti.API.error('error logging user out');
      }
    });
  });
};

Setting the User’s Profile Picture
The view was created earlier in the chapter with a placeholder for the user’s profile picture. 
This picture will be displayed next to comments posted by the user. You will integrate with 
Appcelerator Cloud Services to associate an image with the user account and use the 
Appcelerator API to interact with the camera on the device. Most of the code in the controller 
for working with the camera API should be familiar since it has been covered earlier in 
the book.

You will create an event handler function handleProfileImageClick so that when the 
users click on the photo, they can select it from the local device using the API call Ti.Media.
openPhotoGallery or take a new photo using Ti.Media.showCamera, which will be 
saved and associated with the account. Since the view and style information was done 
already, all that is left is to update the settings.js controller file. Add the following code 
to the settings.js controller file:

function handleProfileImageClick() {
  var dopts = {
    options : ['Take Photo', 'Open Photo Gallery'],
    title : 'Pick Photo Source'
  };

  if (OS_IOS) {
    dopts.options.push('Cancel');
    dopts.cancel = dopts.options.length - 1;
  } else {
    dopts.buttonNames = ['Cancel'];

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M326

  }
  var optionDialog = Ti.UI.createOptionDialog(dopts);

  optionDialog.addEventListener('click', function(e) {
    var options = {
      success : processPhoto,
      cancel : function() {
      },
      error : function(e) {
        Ti.API.error(JSON.stringify(e));
      },
      allowEditing : true,
      mediaTypes : [Ti.Media.MEDIA_TYPE_PHOTO],
    };
    if (e.button) {
      return;
    } else if (e.index == 0) {
      Ti.Media.showCamera(options);
    } else if (e.index == 1) {
      Ti.Media.openPhotoGallery(options);
    }
  });

  optionDialog.show();
}

Add the stub for processPhoto function so you can run the app to get an idea of the 
functionality.

function processPhoto(_event) {
}

Running the code on iOS, the Settings window and Options dialog should look like 
Figure 12-3.

Running the code on Android, the Settings window and Options dialog should look like 
Figure 12-4.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 327

Figure 12-3: Screenshot of the iOS Options dialog for Profile Photo Source on Settings tab.

To actually process the photo, you need to get the image media from the camera or the photo 
gallery and then upload it to Appcelerator Cloud Services. The user object from the 
Appcelerator Cloud Services has a property called photo that you will use to store the profile 
picture.

You will need to update the Alloy sync adapter to support the ability to update the user 
object. This is accomplished by using the Appcelerator Cloud Services API call Cloud.
Users.update. The function is implemented in the application in a similar manner as it is 
presented in the Appcelerator documentation (see http://docs.appcelerator.com/
titanium/latest/#!/api/Titanium.Cloud.Users).

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Users
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Users
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M328

Figure 12-4: Screenshot of the Android Options dialog for Profile Photo Source on Settings tab.

Open the acs.js file in the assets/alloy/sync folder and add the following code to the 
function processACSUsers in the switch statement:

    case "update":
      var params = model.toJSON();
      Cloud.Users.update(params, function(e) {
        if (e.success) {
          model.meta = e.meta;
          options.success && options.success(e.users[0]);
          model.trigger("fetch");
        } else {
          Ti.API.error("Cloud.Users.update " + e.message);

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 329

          options.error && options.error(e.error && e.message|| e);
        }
      });
      break;

Using the image from the camera event callback, you can assign the photo property on the 
global variable Alloy.Globals.currentUser and save the image. After the image is 
saved, you will want to assign it directly to the profileImage view element so the user gets 
immediate feedback of the updated image.

Adding a Few Performance Enhancements
Since the cameras on most of the newer phones take high resolution images and you don’t 
need anything like that for the profile picture, there is an Appcelerator native module that we 
can import to resize the images based on their size. Ti.ImageFactory module is a free 
module that can be downloaded in the Appcelerator Marketplace; download the module and 
follow the instructions for adding it to your project.

After you install the module, your tiapp.xml file should look Figure 12-5.

Figure 12-5: Screenshot of the tiapp.xml properties page in Titanium Studio showing the 
ImageFactory module.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M330

Resizing the images before uploading to Appcelerator Cloud Services will provide for a much 
better user experience since this large image will not get uploaded when only a thumbnail is 
needed.

Update the function processPhoto with the following code:

function processPhoto(_event) {

  Alloy.Globals.PW.showIndicator("Saving Image");
  var ImageFactory = require('ti.imagefactory');

  if (OS_ANDROID || _event.media.width > 700) {
    var w, h;
    w = _event.media.width * .50;
    h = _event.media.height * .50;
    $.currentUserCustomPhoto =  
ImageFactory.imageAsResized(_event.media, {

      width : w,
      height : h
    });
  } else {
    // we do not need to compress here
    $.currentUserCustomPhoto = _event.media;
  }

  Alloy.Globals.currentUser.save({
    "photo" : $.currentUserCustomPhoto,
    "photo_sizes[thumb_100]" : "100x100#",
    // We need this since we are showing the image immediately
    "photo_sync_sizes[]" : "thumb_100",
  }, {
    success : function(_model, _response) {

      // take the cropped thumb and display it
      setTimeout(function() {

        // give ACS some time to process image then get
        // updated user object
        Alloy.Globals.currentUser.showMe(function(_resp) {
          Alloy.Globals.PW.hideIndicator();

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 331

          _resp.model && (Alloy.Globals.currentUser = _resp.model);
          if (_resp.model.attributes.photo.processed) {
            $.profileImage.image =
                      _resp.model.attributes.photo.urls.thumb_100;
            alert("Your profile photo has been changed.");
          } else {
            $.profileImage.image =
                     _resp.model.attributes.photo.urls.original;

            alert("Profile photo changed, processing not
                                                     complete");
            // clear out values force refresh on next
            // focus if we still dont have an image
            $.currentUserCustomPhoto = null;
            $.initialized = false;
          }
        });
      }, 3000);
    },
    error : function(error) {
      Alloy.Globals.PW.hideIndicator();
      alert("Error saving your profile " + String(error));
      Ti.API.error(error);
      return;
    }
  });
}

Getting the basic user information for the page to display the avatar photo when it is avail-
able is done by calling function loadProfileInformation when the window gains focus. 
To keep the application from making the API calls to Appcelerator Cloud Services every time 
the window gains focus, you set a flag after the first API call. If the user wants to refresh the 
information, they can click the Refresh button on the page. The event handler for the Refresh 
button will be associated with the same function, which is loadProfileInformation.

Add the event listener for when the page gains focus to the bottom of the settings.js 
controller file:

$.getView().addEventListener("focus", function() {
    setTimeout(function() {
        !$.initialized && loadProfileInformation();

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M332

        $.initialized = true;
    }, 200);
});

The function loadProfileInformation will perform quite a few other tasks, but for now 
you will add code to show the user photo when the user opens the Settings tab.

Add this code to get started with the function:

function loadProfileInformation() {
  Alloy.Globals.PW.showIndicator("Loading User Information");

  // get the attributes from the current user
  var attributes = Alloy.Globals.currentUser.attributes;
  var currentUser = Alloy.Globals.currentUser;

  Ti.API.debug(JSON.stringify(attributes, null, 2));

  // set the user profile photo
  if ($.currentUserCustomPhoto) {
    $.profileImage.image = $.currentUserCustomPhoto;
  } else if (attributes.photo && attributes.photo.urls) {
    $.profileImage.image = attributes.photo.urls.thumb_100 || 
attributes.photo.urls.original;

  } else if ( typeof (attributes.external_accounts) !== 
"undefined") {

    $.profileImage.image = 'https://graph.facebook.com/' + 
attributes.username + '/picture';

  } else {
    Ti.API.debug('no photo using missing gif');
    $.profileImage.image = '/missing.gif';
  }

  Alloy.Globals.PW.hideIndicator();
}

You can run the code and set up a profile image for a user, as shown in Figures 12-6 
and 12-7.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 333

Figure 12-6: Screenshot of the iOS User Profile Picture Update on the Settings tab.

Returning to the Feed Controller for  
Performance and UI Enhancement
This performance enhancement can also be added to your feed.js controller. You might 
have noticed that on high-resolution cameras when running over 3G or LTE that the upload 
performance of the images is not great. You can add the resizing function to feed.js to 
provide the user with a much better experience.

Replace the success handler in feed.js controller file in the cameraButtonClicked 
method; you can see the addition of the indicator to give the user some feedback that there 
is a process going on. Note also the resizing functionality.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M334

Figure 12-7: Screenshot of the Android User Profile Picture Update on the Settings tab.

Alloy.Globals.PW.showIndicator("Saving Image", false);
var ImageFactory = require('ti.imagefactory');

if (OS_ANDROID || event.media.width > 700) {
  var w, h;
  w = event.media.width * .50;
  h = event.media.height * .50;
  $.resizedPhoto = ImageFactory.imageAsResized(event.media, {
    width : w,
    height : h
  });
} else {

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 335

  // we do not need to compress here
  $.resizedPhoto = event.media;
}

processImage($.resizedPhoto, function(_photoResp) {

  if (_photoResp.success) {

    // create the row
    var row = Alloy.createController("feedRow", _photoResp.model);

    // add the controller view, which is a row to the table
    if ($.feedTable.getData().length === 0) {
      $.feedTable.setData([]);
      $.feedTable.appendRow(row.getView(), true);
    } else {
      $.feedTable.insertRowBefore(0, row.getView(), true);
    }

    //now add to the backbone collection
    var collection = Alloy.Collections.instance("Photo");
    collection.add(_photoResp.model, {
      at : 0,
      silent : true
    });

    // notify followers
    notifyFollowers(_photoResp.model, "New Photo Added");

  } else {
    alert("Error saving photo " + processResponse.message);
    }
  });
},

Additional Information from the User Account
The user has photos and friends; you can utilize the User.showMe method’s returned model 
object to get the latest information on how many photos the user has taken. Getting infor-
mation about the user’s followers requires a separate Appcelerator Cloud Services API.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M336

The displayed name can be the first and last name of the user; if that is not provided you will 
display the username provided when the account is created. The other information needed is 
the friend count. Calling the method User.getFriends, which was added to the user 
model in the previous chapter, can give you that information. This can be accomplished with 
the following code, which you add to the loadProfileInformation function in the 
Â�settings.js controller file:

// get the name for display
if (attributes.firstName && attributes.lastName) {
    $.fullname.text = attributes.firstName + " " +  
attributes.lastName;

} else {
    $.fullname.text = attributes.username;
}

// get the user object from server and the photo count
currentUser.showMe(function(_response) {
    if (_response.success) {
        $.photoCount.text =  
_response.model.get("stats").photos.total_count;

    } else {
        alert("Error getting user information");
    }

    // get the friends count
    currentUser.getFriends(function(_response2) {
        if (_response2.success) {
            $.friendCount.text = _response2.collection.length;
        } else {
            alert("Error getting user friend information");
        }
        
        Alloy.Globals.PW.hideIndicator();
    });
});

The last thing you’ll want to do before working on the next set of data to integrate in the Settings 
page is to wire up the Refresh Counts button. There might be a more elegant way to implement 
this feature, but for updating the user information without constant API calls to server, this 
approach leaves it to the user to initiate the API call. See Figure 12-8 for the completed section.

/* listen for click on refreshBtn to refresh data */
$.refreshBtn.addEventListener("click", loadProfileInformation);

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 337

Figure 12-8: The Header section of Settings tab is complete.

Adding Content to the Main View in the Settings Tab
The last section to complete on the Settings tab is the content you will be adding to the 
Â�mainBody element in the settings.xml view file. In this section, you will be displaying the 
social media status in Facebook and Twitter and the status of push notifications, on or off.

The way you will lay out the screen is with a section heading, a separator, and then the appro-
priate switch for the user to turn the functionally on or off. You can add the following code to 
the settings.xml view file for laying out the controls in the window:

<View id='mainBody'>
    <Label class='sectionHdr  top20dp'>Social Media</Label>
    <View class='sectionSeparator'/>
    <View class='switchContainer'>
        <Label class='switchLabel'>Facebook Status</Label>
        <Switch id='facebookBtn' 

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M338

onChange='onSwitchChange'></Switch>
    </View>
    <View class='switchContainer'>
        <Label class='switchLabel'>Twitter Status</Label>
        <Switch id='twitterBtn' onChange='onSwitchChange'></Switch>
    </View>
    <Label class='sectionHdr top10dp'>Push Notification</Label>
    <View class='sectionSeparator'/>
    <View class='switchContainer'>
        <Label class='switchLabel'>Notifications Status</Label>
        <Switch id='notificationsBtn'  
onChange='onSwitchChange'></Switch>

    </View>
</View>

Platform-Specific User Interface for Switch Control
The switch control looks different and requires different properties based on the platform 
you are using. To address this issue you will be using the platform selectors in the 
Â�settings.tss style file to specify the behavior based on the platform. You can add the 
following code to the bottom of the settings.tss style file for the setting window 
to get the user interface to look like the mock-ups.

'#mainBody' : {
  layout : 'vertical'
},
'.top20dp' : {
    top :'20dp',
},
'.sectionHdr' : {
    width : Ti.UI.FILL,
    height :Ti.UI.SIZE,   
    color : '#444', 
    font : {
        fontWeight : 'bold',
        fontSize : '16dp',
    }
},
'.sectionSeparator[platform=ios]' : {
    width : '80%',
    height :'1dp',    
    backgroundColor : '#CCC'
},

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 339

'.sectionSeparator[platform=android]' : {
    width : '90%',
    height :'1dp',    
    backgroundColor : '#CCC'
},
'.switchContainer[platform=ios]' : {
    top : '4dp',
    height : '38dp',
    layout : 'horizontal',
    width : '100%',    
},
'.switchContainer[platform=android]' : {
    top : '4dp',
    height : Ti.UI.SIZE,
    layout : 'horizontal',
    width : '100%',    
},
'.switchLabel' : {
    textAlign : 'right',
    left : 0,
    right : '30dp',
    width : '60%',
    color : '#444', 
    center : {
      y : '50%'
    },    
},
'Switch[platform=android]' : {
  titleOn:'Enabled',
  titleOff:'Disabled',
  value:true,
  width: '100dp', 
  height:'44dp' 
},
'Switch[platform=ios]' : {
    value : true, // mandatory property for iOS
    left : '8dp',
    height : '28dp',
    center : {
      y : '50%'
    },
},

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M340

You will also need to add the stub for the switch change to the event listener that you added 
in the settings.xml view. You will fill the code in later, but adding the stub now will allow 
you to run the code to see what the layout looks like. Add this code to settings.js con-
troller file.

function onSwitchChange(_event) {
}

When you run the code, you’ll see something like Figure 12-9 on iOS and something like 
Figure 12-10 on Android.

Figure 12-9: Final application looks like this on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 341

Figure 12-10: Final application looks like this on Android.

Handling the Switch Initialization Values
You added the controller variable onSwitchChangeActive to indicate if the switch event 
listener was activated. You will initialize the value to false when starting the controller so the 
initial values for all of the switches can be set. You will also set it to false when responding to 
a user action to make sure the event isn’t looping. Add this line of code as the last line in the 
loadProfileInformation function:

$.onSwitchChangeActive = true;

Initialize all of the social media switches to false at the top of the settings.js controller file.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M342

$.twitterBtn.value = false;
$.facebookBtn.value = false;

The Switch control in Appcelerator fires the change event whenever the value is changed, 
even if changed programmatically.

In the loadProfileInformation function you created in the previous section, you can 
add the following code to properly set the Twitter and Facebook status for the current user.

// load the social media settings
$.twitterBtn.value = Alloy.Globals.TW.isAuthorized();
$.facebookBtn.value = Alloy.Globals.FB.getLoggedIn();

The Twitter check is accomplished by calling the isAuthorized method on the Twitter 
library you included in the social media section. The getLoggedIn function is part of the 
Appcelerator Facebook module.

To activate the social media libraries, you will use the onSwitchChange event listener han-
dler; in that function you will create a switch statement that will take the appropriate action 
based on the ID of the control that fired the change event. Each switch that was added to the 
settings.xml view file has a unique identifier based on the social media library it refer-
ences. The pattern is to check if the specified social media account was active/authorized and 
if it is when the function is called, then deactivate/logout. Both of the social media libraries 
can perform the action, so the following code should be self-explanatory.

Add the sharing.js library to the settings.js controller file:

var sharing = require("sharing");

Add this code to the settings.js controller file:

function onSwitchChange(_event) {

    // dont respond to events until initialization is completed
    if ($.onSwitchChangeActive === false) {
        return;
    }

    $.onSwitchChangeActive = false;

    var selItem = _event.source;

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 343

    switch (selItem.id) {
        case "notificationsBtn" :
        break;
        case "twitterBtn":
            if (Alloy.Globals.TW.isAuthorized() === false
                                    || selItem.value === false) {
                Alloy.Globals.TW.authorize(function(_response) { 
                    selItem.value =_response.userid ? true:false;
                    activateOnSwitchChange();
                });
            } else {
                Alloy.Globals.TW.deauthorize();
                selItem.value = false;
                activateOnSwitchChange();
            }
            break;
        case "facebookBtn":
            if (Alloy.Globals.FB.getLoggedIn() === true) {
                Alloy.Globals.FB.logout();
                selItem.value = false;
                activateOnSwitchChange();
            } else {
                var sharing = require("sharing");
                sharing.prepForFacebookShare(function(_success) {
                    selItem.value = _success;
                    activateOnSwitchChange();
                });
            }
            break;
    }
}

You will also need this helper function to reactivate the listener after the application is done 
responding to the change event from the user clicking on the switch:

function activateOnSwitchChange() {
    setTimeout(function() {
        $.onSwitchChangeActive = true;
    }, 200);
}

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M344

Displaying Push Notification Status
The push notification status update is the last piece of information that is manageable from 
this Settings tab. The Appcelerator Cloud Services API does not provide a function in the ti.
cloud.js library to provide that information, so you will need to leverage the REST API 
that is provided by Appcelerator Cloud Services. This further demonstrates the overall flexi-
bility of the platform and API; you can extend and customize as needed.

The API call that you will use is the query.json endpoint on the push_notifcation API. 
The call is done by using the Appcelerator Ti.Network.createHTTPClient function call 
to make a get request to the API. This request requires the user.id and the client_id 
from Appcelerator Cloud Services. The user.id you will get from the currentUser object 
and the client_id property you will get from the tiapp.xml file.

When you enable cloud services in your project on project creation, Titanium Studio will add 
the production and development keys to the tiapp.xml file. Those values are treated a prop-
erties and are accessible using the Appcelerator API call Ti.App.Properties.getString 
and then use the key "acs-api-key-development" or "acs-api-key-production", 
depending on the environment you are in.

Now that you can determine the environment appropriately, you can add the following func-
tion to the pushNotifications.js library file:

exports.getChannels = function(_user, _callback) {

  var xhr = Ti.Network.createHTTPClient();

  // create the url with params

  // get the environment specific Key
  var isProduction = Titanium.App.deployType === "production";
  var acsKeyName = "acs-api-key-" +
               ( isProduction ? "production" : "development");

  // construct the URL
  var url =  
"https://api.cloud.appcelerator.com/v1/push_notification/query.
json?key=";

  url += Ti.App.Properties.getString(acsKeyName);
  url += "&user_id=" + _user.id;

  xhr.open("GET", url);
  xhr.setRequestHeader('Accept', 'application/json');
  xhr.onerror = function(e) {

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 345

    alert(e);
    Ti.API.info(" " + String(e));
  };
  xhr.onload = function() {
    try {
      Ti.API.debug(" " + xhr.responseText);
      var data = JSON.parse(xhr.responseText);
      var subscriptions = data.response.subscriptions[0];
      Ti.API.info(JSON.stringify(subscriptions));

      _callback && _callback({
        success : true,
        data : subscriptions,
      });
    } catch(E) {
      Ti.API.error(" " + String(E));

      _callback && _callback({
        success : false,
        data : null,
        error : E
      });
    }
  };

  xhr.send();
};

Now that the function is in place, you will put it to use in the settings.js controller file to 
set the status of push notification visually through the switch user interface element.

Add the push notification library to beginning of the settings.js controller file:

var pushLib = require('pushNotifications');

Then in the callback of the controller in loadProfileInformation, add the call to get the 
channels that the user is subscribed to; you are looking for the friends channel to indicate 
if the switch should be turned on or off. Add the following code inside the success callback of 
the currentUser.getFriends function:

  pushLib.getChannels(currentUser, function(_response3) {
    var friendActive;

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M346

    if (_response3.success) {
      $.connectedToFriends = (_.contains(_response3.data.channel,
                                                "friends") !== -1);
      $.notificationsBtn.value = $.connectedToFriends;
    } else {
      $.notificationsBtn.value = $.connectedToFriends = false;
    }

Compile and run your project. You should get visual information regarding push notifica-
tions on the friends channel. Next, you will add the functionality to allow the users to turn 
notifications on and off.

Running the code should look like the previous figures; however, changing the status of the 
switch from on to off will enable the functionality.

Changing the Push Notification Status
The push notification status indicates whether the user has subscribed to a specific channel. 
The channel status that you are displaying is the friends channel. In the previous section 
you made a function that queried Appcelerator Cloud Services to see if the current user is 
subscribed to the channel. In this section, you will use the ti.cloud.js function to unsub-
scribe the users from the friends channel when they select the disabled or off status from 
the push notifications switch.

Add the following code to the notificationsBtn switch in the onSwitchChange func-
tion of the settings.js controller file:

case "notificationsBtn" :
  if ($.connectedToFriends === true) {
    pushLib.pushUnsubscribe({
      channel : "friends",
      device_token : Alloy.Globals.pushToken
    }, function(_response) {
      if (_response.success) {
        // unsubscribe worked
        selItem.value = $.connectedToFriends = false;
        activateOnSwitchChange();
      }
    });
  } else {
    pushLib.subscribe("friends", Alloy.Globals.pushToken,
    function(_response) {

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 2 â•‡ S E T T I N G S  A N D  U S E R  M A N A G E M E N T 347

      if (_response.success) {
        // subscribe worked
        selItem.value = $.connectedToFriends = true;
        activateOnSwitchChange();
      }
    });
  }

  break;

Calling the pushUnsubscribe function, all you have to do is pass the name of the channel 
to unsubscribe from along with the pushtoken. The Alloy.Globals.pushToken is set 
when the application configured and connected the user’s device to the push notification 
server.

When the call is completed, you will see that the function updates the value of the switch to 
reflect the current status of push notifications. When the users unsubscribe from the chan-
nel, they will no longer receive notifications, but the notifications will still be sent out.

Summary
This is the last tab in the application, so you should be all done with a functioning cross-
platform application using Appcelerator Alloy and Appcelerator Cloud Services. The Settings 
tab allows you to configure the application and view status of integrations with social media 
and push notifications.

The Feed tab allows you to list the photos you have taken, comment on the photos, share 
your photos, and see the location where the photo was taken. The Feed tab also allows you to 
view photos close to your current location.

The Friends tab shows users who have the app and users you can select to follow.

This app is fully integrated with Appcelerator Cloud Services and is a good start for more 
advanced functionality and integration with Appcelerator and other third-party systems.

This app follows some of the best practices using the MVC framework Appcelerator Alloy, 
which will assist you in writing well structured and maintainable cross-platform mobile solu-
tions. Chapter 13 discusses deploying your solution on the iOS App Store and on the Google 
Play Store.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M348

www.it-ebooks.info

http://www.it-ebooks.info/


Chapter 13
Going to Market: Deploying to the 
App Store and to Google Play

THE DISTRIBUTION PROCESS for deploying your application to the Google Play Store 
and Apple App Store is pretty well documented on the Appcelerator website. The process is 
outlined briefly in this chapter, and more detailed step-by-step instructions and FAQs can be 
found on the Appcelerator site at http://docs.appcelerator.com/titanium/3.0/ 
#!/guide/Preparing_for_Distribution.

Process Overview
This chapter describes how to deploy your cross-platform mobile app to the App Store and 
Google Play. The overall process is similar for both stores and is outlined here.

Registering for a Developer Account
The iOS Developer Program costs $99 per year and a Google Play Developer account costs 
$25. This barrier to entry is supposed to raise the minimum quality level of app submissions.

Signing Your Application
Signing with a digital certificate proves your identity as the developer of your app. You 
will create a CSR and sign the application with a certificate to which only you have the 
private key.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/3.0/#!/guide/Preparing_for_Distribution
http://docs.appcelerator.com/titanium/3.0/#!/guide/Preparing_for_Distribution
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M350

Creating an App Record and Filling Out Metadata
Each store requires certain metadata and image assets. Now is a good time to start putting 
together some general information to smooth out the process:

■	 App name

■	 Description (up to 4,000 characters)

■	 Keywords

■	 Large app icon (1024×1024 for iOS and 512×512 for Android)

■	 Screenshots (at least one 3.5-inch and one 4-inch for iOS; any two screenshots for 
Android)

Publishing Your Binary to the Store
You can create binaries for store submission directly from Titanium Studio. A publishing 
wizard steps you through the process of locating the certificates you created earlier.

iOS App Store Submission Process
Follow the steps outlined in this section to publish your app to the iOS App Store.

Signing Up for an iOS Developer Account
This is simply an online checkout process where you add the iOS Developer Program to your 
cart and pay using a credit card. Go to https://developer.apple.com/programs/
ios/ and click Enroll Now.

When you have completed this process, you will receive notification for signing up for the 
Apple Developer Program and iTunesConnect. The iTunes Developer Program website is 
where you manage the development-related activities, whereas iTunesConnect is for manag-
ing store-related activities.

Signing Your iOS Application
This is split into three separate steps:

■	 Creating your application ID

■	 Creating a distribution certificate for the application

■	 Creating a distribution provisioning profile for your application

www.it-ebooks.info

https://developer.apple.com/programs/ios/
https://developer.apple.com/programs/ios/
http://www.it-ebooks.info/


C H A P T E R  1 3 â•‡ G O I N G  T O  M A R K E T :  D E P L O Y I N G  T O  T H E  A P P  S T O R E 351

These steps are pretty well documented in the Appcelerator website and also on Apple’s 
Developer Member Center; there are no Appcelerator-specific adjustments required in this 
process. See the respective sites for details.

Creating an iTunes Connect Record
The iTunesConnect record will hold all of the information required to publish your binary to 
the App Store. You create the record first so Appcelerator IDE can associate the application 
binary with the record for you.

These steps are pretty well documented in the Appcelerator website and also on Apple’s 
Developer Member Center; there are no Appcelerator-specific adjustments required in this 
process. See the respective sites for details.

After you follow all of the steps, you know your process is completed when you see the 
“Waiting for Upload” message appear as the app status in iTunesConnect.

Publishing from Titanium Studio
Right-click your project and then choose Publish ➪ Distribute - Apple iTunes Store, as shown 
in Figure 13-1.

Figure 13-1: The Publish menu in Titanium Studio.

You’ll see the screen in Figure 13-2. You must belong to the iOS Developer Program to pro-
ceed further.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M352

Figure 13-2: Distribute wizard: General.

Click Next to see screen Figure 13-3, which deals with certificates. For Select Distribution 
Certificate, choose the Distribution Certificate you created earlier in the Member Center. For 
Select Keychain, use the system defaults.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 3 â•‡ G O I N G  T O  M A R K E T :  D E P L O Y I N G  T O  T H E  A P P  S T O R E 353

Figure 13-3: Distribute wizard: Certificates.

For Select Provisioning Profile, choose the distribution provisioning profile you created ear-
lier in the Member Center. See Figure 13-4.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M354

Figure 13-4: Distribute wizard: Provisioning.

When you’re prompted to access the keychain, click Always Allow. See Figure 13-5.

Figure 13-5: Always allow keychain access.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 3 â•‡ G O I N G  T O  M A R K E T :  D E P L O Y I N G  T O  T H E  A P P  S T O R E 355

You may see the System Preferences open. If so, click OK. See Figure 13-6.

Figure 13-6: System Preferences Accessibility window.

You should see that the project was built successfully based on the output displayed on the 
console, as shown in Figure 13-7.

Figure 13-7: Success message from Titanium Studio.

Uploading Your Binary to the App Store
When the build is complete in Titanium Studio, you will see that Xcode has launched into the 
Organizer; see Figure 13-8.

Click the Archives tab, select the application you just built, and click Distribute. Follow the 
prompts to complete the validation of your application and submission to the App Store.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M356

Figure 13-8: The Archives tab in the Xcode Organizer.

Over the next few days (exact timing will vary), keep an eye on status changes. Once you see 
“Ready for Sale,” your app is live. Here are the various status changes you will see:

■	 Upload Received

■	 Waiting For Review

■	 In Review

■	 Processing for App Store

■	 Ready for Sale

For your first app version, you can control the exact launch date of your app by manipulating 
the availability date. Version updates give you the option of releasing manually.

Google Play Submission Process
Follow the steps outlined in this section to publish your app to the Google Play Store.

Signing Up for a Google Play Developer Account
Similar to the iOS Developer Program, this is a checkout process where you purchase a 
Developer Account. Visit the following link to get started: https://play.google.com/
apps/publish/signup/.

Select the I Agree checkbox and click Continue to Payment. See Figure 13-9.

Next you will see a standard credit card form. Complete the form and click Buy.

After the purchase is complete, fill out a form with some basic personal information. Click on 
Complete Registration when you’re finished. See Figure 13-10.

www.it-ebooks.info

https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
http://www.it-ebooks.info/


C H A P T E R  1 3 â•‡ G O I N G  T O  M A R K E T :  D E P L O Y I N G  T O  T H E  A P P  S T O R E 357

Figure 13-9: Accept the developer agreement.

Figure 13-10: Complete the Account details.

Now you have access to the Developer’s Console: https://play.google.com/apps/
publish. Click on Publish an Android App on Google Play to create an app store listing. See 
Figure 13-11.

www.it-ebooks.info

https://play.google.com/apps/publish
https://play.google.com/apps/publish
http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M358

Figure 13-11: The developer’s console.

Learn more about publishing Android apps from Google’s documentation at https://
developer.android.com/distribute/googleplay/publish/register.html.

Follow the prompts to fill out the information for the application. You will be using the meta-
data you captured earlier in the process and setting images for the icon and display of the 
application in the Google Play Store.

Generating a Keystore for Publishing
There are two ways to deploy an application: in debug mode and in release mode. Both 
involve signing your APK with a digital certificate. Note that the APK is not encrypted; it is 
only signed to identify the developer. Titanium transparently takes care of the signing pro-
cess in debug mode. The tradeoff is that the target device must be configured to developer 
mode.

Release mode needs to be used for Google Play. The APK is signed with a digital certificate, to 
which you as the developer have sole access to the private key. This certificate cannot be 
forged, so users can rest assured that app updates originate from you. This also means that 
you lose the ability to update your app if you lose the private key.

See http://developer.android.com/tools/publishing/app-signing.html for 
more information.

www.it-ebooks.info

https://developer.android.com/distribute/googleplay/publish/register.html
https://developer.android.com/distribute/googleplay/publish/register.html
http://developer.android.com/tools/publishing/app-signing.html
http://www.it-ebooks.info/


C H A P T E R  1 3 â•‡ G O I N G  T O  M A R K E T :  D E P L O Y I N G  T O  T H E  A P P  S T O R E 359

A keystore is a local database containing private keys and public certificates. You’ll need to 
create a keystore for your app named myApp:

cd ~/Documents
keytool -genkeypair -v -keystore myApp.keystore -alias myApp - 
keyalg RSA -sigalg SHA1withRSA -validity 10000

In this example, you are creating a file located at ~/Documents/myApp.keystore. 
Titanium will need this location later.

The -alias used is myApp. Titanium will ask for the alias.

The -validity 10000 is the length in days, which works out to 27 years (and exceeds the 
25-year requirement).

Fill out the certificate information as follows:

What is your first and last name?
  [Unknown]:  John Doe
What is the name of your organizational unit?
  [Unknown]:  myCompanyName
What is the name of your organization?
  [Unknown]:  myCompanyName
What is the name of your City or Locality?
  [Unknown]:  Washington DC
What is the name of your State or Province?
  [Unknown]:  DC
What is the two-letter country code for this unit?
  [Unknown]:  US

You will be prompted for a password. This is your keystore password, as required by Titanium.

Enter key password for <myApp>

Save your keystore and password in a safe place.

Publishing to Google Play
Right-click your project and then choose Publish ➪ Distribute - Android App Store, as shown 
in Figure 13-12.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M360

Figure 13-12: Publish menu in Titanium Studio.

For Distribution Location, browse to your desktop for easy access. For Keystore Location, 
point to the myApp.keystore file you created earlier in Documents. Enter the keystore 
password and key alias you used when you created the keystore. Finally, click Publish. You’ll 
see something similar to Figure 13-13.

Figure 13-13: Entering keystore information into the Distribute wizard.

www.it-ebooks.info

http://www.it-ebooks.info/


C H A P T E R  1 3 â•‡ G O I N G  T O  M A R K E T :  D E P L O Y I N G  T O  T H E  A P P  S T O R E 361

When the build process is complete, you will see output in the console of Titanium Studio, as 
shown in Figure 13-14.

Figure 13-14: Success message from Titanium Studio.

Go back to the Developer Console window in your browser and select APK from the left navi-
gation menu, as shown in Figure 13-15.

Figure 13-15: Google Play developer console menu.

Follow the directions provided to upload your APK to Google Play. Once the application is 
successfully uploaded, you should see a menu on the top right of your browser indicating the 
app is ready to publish. Select Publish This App to release your app on Google Play. It may 
take several hours (exact timing will vary) before your app becomes live in the store. See 
Figure 13-16.

www.it-ebooks.info

http://www.it-ebooks.info/


B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M362

Figure 13-16: The Ready to Publish option appears when the store listing is complete.

Summary
Publishing your app to the Apple App Store or the Google Play Store involves similar steps. 
You first register for a developer account and then create a certificate to sign your applica-
tion. Next, you create an app record and fill out the metadata for the store listing. Finally, you 
create a distribution build in Titanium Studio signed by your certificate and upload it to the 
store. All that’s left is to sit back and watch the money roll in!

www.it-ebooks.info

http://www.it-ebooks.info/


Index

A
Account Creation screen, sample, 83
accounts, creating, 17, 188–196
adapter object, 54
addComment function, 158–162, 308
addPhotosToMap function, 253
AJAX, 54
alloy models, extending, 117
Alloy.createController function, 

66–67, 69
alloy.js file, 188, 200
Android

getting a token, 296–297
managing logout on, 321–324
support for Google Maps v2, 235–237

Android ActionBar
Android Support for, 237
using for Camera button, 114–116

Android SDK, installing, 10, 13–14
App Store, 355–356. See also distribution 

process
Appcelerator Cloud Services. See also 

specific topics
about, 15–17
accessing device camera in, 109–110
adding, 116–132
benefits of, 90
configuring, 3–14
configuring push notifications in, 292–293
console, 17–25, 303–306
framework, 90
friends object, 208–209
installing, 3–14
integrating, 31–34. See also user accounts
integrating with user accounts. See user 

accounts
modifying sync adapter to support friends, 

210–211
modifying sync adapter to support photo 

model, 122–124

modifying sync adapters to support user 
queries, 209–210

preconfiguring, 96–99
Push Notifications API. See push 

notifications
REST API, 25–31
sync adapters, 120–121
website, 3, 16, 96

Appcelerator Community websites, 1, 3
Appcelerator Titanium Alloy

about, 43
adding friends user interface, 200–205
Backbone.js in, 50–53
creating commonJS library in, 197–200
creating widgets, 74–80
data binding with models in, 69–74
finishing ListView, 205–208
model-view data binding, 56–68
Model-View-Controller (MVC) framework, 

44–53
sync adapters, 54–56, 116–132

Apple push notifications, 291, 292
applications. See also cross-platform apps, 

development process for
creating push notifications library in,  

293–300
creating records, 350
cross-platform social photo-sharing, 81–92
flow of, 92
including social.js in, 287
integrating push notifications in, 300–313
setting up to use Facebook module, 188
signing, 349
updating to be friend- and location-aware, 

227–228
approval_required parameter, 214–215
app.tss file, 103–104
authenticated method, 180
authentication, Facebook, 195

www.it-ebooks.info

http://www.it-ebooks.info/


364 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M364

B
backbone model events, 55–56
Backbone.js, 50–53
backbonejssave method, 158–162
Balsamiq, designing mockups with, 81–89
binary, 350, 355–356
Button object, 70
buttonContainer, 113
buttonToggle widget, 78

C
callback method, 127
_callback parameter, 179, 312
callbackFunction variable, 154
callbacks, registering, 297–300
Camera API, adding calls to feed controller, 

110–111
Camera button, 106, 114–116
Camera feature, 90
cameraButtonClicked function,  

128–129, 333
cancelButton, 155
checkPermissions function, 270–271
click event, 70
clicksource property, 257
close function, 188
Cloud.Photos.show() library, 131
Cloud.Reviews.query method, 145
Cloud.Users.Create method, 37–38
code, adding, 198–200
collection objects, creating, 64–68
collections, 50, 142–146
collect_name property, 142–143
comment controllers, finishing, 146–148
comment view, cross-platform support in,  

140–142
commentButton, 108–109, 151
comment_id property, 147–148
comment.js controller, 139, 140, 146, 152, 

157–158, 163, 308, 309
commentRow controller, 142, 147–148
commentRow.xml view, 136–137
comments

about, 91, 135
adding logic to controllers, 139–142
adding models and collections for querying, 

142–146

adding new comments to photos, 152–162
creating commentTable view layout,  

135–139
deleting, 163–165
finishing comment controllers, 146–148
saving, 158–162
showing comment list, 148–152

commentTable view layout, creating,  
135–139

comment.xml view file, 135–139
CommonJS library

creating, 197–200
creating for geolocation, 230–233
creating for sharing functions, 265–268

config.json file, 78
controllers

adding loadPhotos() method to,  
131–133

adding logic to, 139–142
calling from feed.js, 139–140
in Model-View-Controller (MVC), 46–47

controller/view, 70–74
coordinates object, 241
_coords parameter, 235
createAccount function, 184, 187
cross-platform apps, development process for

about, 93
adding Alloy Sync Adapter and Appcelerator 

Cloud Services, 116–133
creating projects, 93–96
creating user interfaces, 99–109
integrating camera functionality, 109–114
preconfiguring Appcelerator Cloud Services, 

96–99
using Android ActionBar for Camera button, 

114–116
cross-platform social photo-sharing application

about, 81
designing mockups with Balsamiq, 81–89
process of, 89–92

cross-platform support, in comment view,  
140–142

CRUD, 44
curl utility, 26
currentPhoto object, 140, 159
currentUser.getFriends function,  

345–346

www.it-ebooks.info

http://www.it-ebooks.info/


365I N D E X

D
data-binding

integrating ListView data-binding with,  
216–223

with models in Appcelerator Titanium Alloy, 
69–74

model-view, 56–68
dataCollection property, 61, 217
dataFilter function, 217
dataTransform function, 217, 220
default styles, setting for windows/tabs,  

103–104
delete event, 163
deleteCommented, 164
destroy function, 163
detail.xml view file, 70
Developer account, registering for, 349
development process, for cross-platform apps. 

See cross-platform apps, development 
process for

devices
accessing camera in Appcelerator, 109–110
getting GPS information from, 230
installing curl on, 26

distance parameter, 246
distribution process

about, 349–350
Google Play, 356–362
iOS App Store submission, 350–356

DocumentsTitanium_Studio_
Workspace folder, 12

doFacebookLoginAction function,  
190–194

doFilter function, 220
$ variable, 70
doOpen function, 115–116, 141, 155, 321–322
doTransform function, 220
downloadFile function, 290

E
editing

user information in Header section, 316–317
user information style, 317–321
view, 316

else condition, 193
Email, sharing images as attachments, 280–284
event.source object, 77
exports.subscribe function, 300

F
Facebook

about, 197
creating accounts with, 188–196
permissions, 269–276
sharing to the Album, 273–276, 279–280
sharing to the wall, 271–273
social integration with, 91

feed controller
adding Camera API calls to, 110–111
modifying, 128–129
returning to, 333–335
updating, 104–106, 233–235
using photo model in, 125

Feed tab, enabling camera functionality on,  
104–106

feed table, adding style to, 112–114
feed.js controller, 110–111, 112, 139–140, 

149, 233–235, 241, 246–247, 251–264,  
271–273, 333–335

feedRow controller, 111–112, 149
feedRow view, 106–109
feedRow.js, 111–112
feedRow.tss file, 112–114, 240–241
feed.xml file, 104–106, 149, 247–251
fetch method, 131, 147
filter function, 68
filterClicked function, 203, 226
filterTabbedBarClicked method, 252
followBtnClicked function, 205
followers, 197
followers parameter, 213–214
followingBtnClicked function, 205
followUser method, 310–311
friends

about, 197
adding user interface, 200–205
creating friend relationships, 211–212
displaying lists of, 221–223
finding, 91
finding relationships based on user ID, 212
modifying sync adapters to support, 210–211
removing relationships from users, 212–213
sending push notifications when adding, 

310–312
working with lists of, 223–227

friends controller, integrating ListView 
data-binding with, 217–223

www.it-ebooks.info

http://www.it-ebooks.info/


366 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M366

Friends/All Users screen, 87–88
friends.js controller file, 207, 217, 310
friends.tss file, 205
friends.xml file, 201, 216–217

G
geo.js, 230–233
getCurrentLocation function, 230, 

232, 234
getFollowers function, 213–214, 306–307
getFriends method, 221
getLoggedIn function, 342
getModelFromSelectedRow function, 

224–225
getView() method, 112
Google Cloud Messaging (GCM), 291, 292
Google Maps v2, Android support for, 235–237
Google Play, 356–362. See also distribution 

process
GPS information, associating when saving 

photos, 229–235

H
handleButtonClicked function, 157
handleCommentButtonClicked 

function, 150
handleDeleteRow function, 163–164
handleLogoutBtnClick function,  

323–325
handleLogoutMenuClick function, 322
handleNewCommentButtonClicked 

function, 141–142
handleProfileImageClick function, 

325–326
handleShareButtonClicked function, 

271, 272
hdrBox class, 319
hdrCount class, 319
hdrLabel class, 319
Header section, editing user information in, 

316–317
http client class, 30
HTTP verbs, 51

I
image download helper function, 273–276
imageContainer, 113

index controller, 181–183, 203
index.js file, 35–36, 62, 66, 68, 101–102, 

151, 181–183, 301
index.tss file, 49
index.xml file, 46, 61, 65, 101–102,  

115–116, 133
InitAdapter, 121
initialize method, 133
initializePushNotifications 

function, 301
inputCallback function, 158
installing

Android SDK, 10, 13–14
Appcelerator, 3–14
curl on devices, 26
iOS Simulator, 9
Titanium Command-Line Interface, 10
Titanium on Macs, 4–6
Titanium Studio IDE, 4–6
Xcode, 7–9

iOS
developer account, 350
getting a token, 295–296
managing logout on, 321–324
signing applications, 350–351

iOS App Store submission process, 350–356
iOS Simulator, 9
isAuthorized method, 342
iTunes Connect record, creating, 351

J
.js controller, 235

K
keystore, creating for publishing, 358–359

L
Library folder, 10
ListView, 205–208, 216–223
loadComments function, 147
loadPhotos() method, 131–133
loadProfileInformation function,  

331–332, 336, 342, 345–346
localStorage setting, 54
_location parameter, 247
locationCallback variable, 233

www.it-ebooks.info

http://www.it-ebooks.info/


367I N D E X

locationCallbackHandler function, 
230–231

locations. See maps and locations
logging in/out

of Facebook, 196
managing on Android and iOS, 321–324
unregistering from push notifications 

when, 312–313
for users, 117–119, 185–186

logic, adding to controllers, 139–142
login controller, 124–125, 184–188,  

185–186, 190–194
Login screen, 167–177, 324–325
loginSuccessAction function,  

182–183, 301
login.xml file, 172, 189
longpress event, 163

M
Macs, installing Titanium on, 4–6
Main Application screen, 84–85
Main view, adding content to, 337–338
make property, 58
mapAnnotationClicked function, 257
mapDetail.js, 261
maps and locations

about, 229
associating GPS information when saving 

photos, 229–235
displaying maps of photos near your 

location, 245–264
displaying photo locations on maps, 235–245

MapView
adding map component to, 238–245
Android Support for ActionBar in, 237
updating user interfaces to show, 247–251

mapview.tss file, 238–245
media, rating, 91
metadata, filling out, 350
mockups, designing with Balsamiq, 81–89
model property, 58
model.attributes property, 147
model.id property, 212
models

about, 50
adding for querying comments, 142–146

creating files, 57–64
data binding in Appcelerator Titanium Alloy 

with, 69–74
in Model-View-Controller (MVC), 44–45

Model.toJSON() function, 72
model-view data binding, 56–68
Model-View-Controller (MVC), 35, 43, 44–47, 

47–53

N
New Photo Comment screen, 86–87
notifications. See push notifications
notifyFollowers function, 309

O
onSwitchChange function, 346–347
onSwitchChangeActive variable, 341
open function, 187–188
openCurrentTabWindow function, 150
options.data property, 212–213, 215
order property, 146

P
parameters variable, 154
permissions, 269–276
per_page property, 146
Photo Capture screen, 89
Photo Comments screen, 85–86
photo models

creating, 121–122
modifying, 229
modifying Appcelerator Cloud Services sync 

adapter to support, 122–124
using in feed view, 125

Photo Uploading feature, 90–91
photos

adding comments to, 152–162
adding locations to, 233–235
associating GPS information when saving, 

229–235
displaying after being processed, 128–129
displaying locations of on maps, 235–245
displaying maps of near your location,  

245–264
listing saved photos at startup, 129–131

www.it-ebooks.info

http://www.it-ebooks.info/


368 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M368

sending push notifications when  
commenting on, 308–310

sending push notifications when posting, 
306–308

sharing as Email attachments, 280–284
photo-sharing application. See cross-platform 

social photo-sharing application
photos.js model, 246–247
prepForFacebookShare function,  

270–271
processACSComments function, 144, 145
processACSFriends function, 211
processACSUsers function, 194–195
processImage function, 126–129, 308
processPhoto function, 330–331
processTableClicks function, 150, 258
progressIndicator function, 290
progressWindow.js file, 276–279
properties sync adapter, 54, 59–60
publishing

binary to store, 350
to Google Play, 359–362
from Titanium Studio, 351–355

push notifications
about, 92, 291
changing status of, 346–347
configuring in Appcelerator Cloud Services, 

292–293
creating library in applications, 293–300
displaying status of, 344–346
integrating in applications, 300–313
registering for when user logs in, 301–302
sending using ACS console, 303–312
sending when adding friends, 310–312
sending when commenting on photos,  

308–310
sending when posting photos, 306–308
setting up on development platform, 292
unregistering from when logging out,  

312–313
pushNotifications.js library, 295,  

300–313, 323, 344–345
_pushRcvCallback method, 295
pushRegisterError function, 298
pushRegisterSuccess function, 298
pushUnsubscribe function, 312

R
rating media, 91
reauthorizations, 269–276
registering

callbacks, 297–300
for Developer account, 349
for push notifications when user logs in,  

301–302
rendering rows, 136–137
requires statement, 101–102, 148
REST API, 25–31
returnParams object, 157
Reviews object, 143, 145
rowIndex property, 203
rows

adding to tables with feedRow  
controller, 112

rendering, 136–137

S
Saunders, Aaron K. (author), contact  

information for, 2
save method, 127, 131
saveButton, 155, 157
ScrollView, 167–168
sending push notifications. See push 

notifications
sendTwitterImage function, 287
setProgressValue method, 276
Settings screen, sample, 88–89
Settings tab

about, 315
adding content to Main view in, 337–338
adding performance enhancements, 329–347
additional information from user account, 

335–337
changing push notification status, 346–347
displaying push notification status, 344–346
editing user information in Header section, 

316–317
editing user information style, 317–321
editing view, 316
handling logout on Android and iOS,  

321–324
handling switch initialization values,  

341–343

photos (continued)

www.it-ebooks.info

http://www.it-ebooks.info/


369I N D E X

platform-specific user interface for switch 
control, 338–341

returning to feed controller, 333–335
returning to Login screen, 324–325
setting user’s profile picture, 325–329

settings.js file, 322–325, 331–332,  
340–342, 344–347

settings.tss file, 316–319, 338–339
settings.xml file, 316–319, 337–338, 340
setup

applications to use Facebook module, 188
index.xml view to support ActionBar, 115
push notifications on development 

platform, 292
Titanium, 3–10
Twitter Developer account, 285

shareButton, 108–109
shareImage function, 285–287
share.js, 271–273
shareOptions method, 273
shareTwitterPhoto function, 288–290
sharing. See also Email; Facebook; Twitter

creating CommonJS library for sharing 
functions, 265–268

to Facebook albums, 279–280
Facebook permissions/reauthorization,  

269–276
images as Email attachments, 280–284
progressWindow library, 276–279
on Twitter, 284–290

sharing.js file, 265–268, 269–276,  
288–290, 324

sharingOptions method, 268
showCreateAccountCreation  

function, 184
showLocalImages function-253, 252
showLoginAction function, 184
signing applications, 349–351
signing up

for Google Play Developer account,  
356–358

for iOS developer account, 350
social photo-sharing application. See cross-

platform social photo-sharing application
SocialIntegrations/externalâ•‰

AccountLogin method, 189

social.js
adding to your project, 285
including in application, 287
integrating Twitter with, 284–290

sql setting, 54
startup, checking for Facebook authentication 

on, 195
Status method, 193
style, adding to feed table, 112–114
switch control, platform-specific user interface 

for, 338–341
switch initialization values, managing, 341–343
switch statement, 342
sync adapters

about, 54
Appcelerator Cloud Services, 120–124
Appcelerator Titanium Alloy, 54–56,  

116–132
backbone model events, 55–56
basic construction of, 54–55
modifying to support friends, 210–211
modifying to support photo model, 122–124
modifying to support user queries,  

209–210

T
tab group files, creating, 99–104
tabgroup object, 115
tableRow, 163
tables

adding rows to TableView, 106–109
adding rows to with feedRow controller, 112
updating, 158–162

TableView, 56, 62, 63, 68, 69, 106–109
TableViewRow object, 112
textArea, 152–153, 155, 157
tiapp.xml file, 293–295, 344
ti.cloud object, 117, 121
ti.cloud.js function, 346
Ti.Geolocation library, 230
Ti.Network.HTTPClient, 30
Titanium

installing command-line interface, 10
installing on Macs, 4–6
setting up, 3–10

www.it-ebooks.info

http://www.it-ebooks.info/


370 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M370

Titanium Studio IDE
installing, 4–6
publishing from, 351–355
website, 4

Titanium.Cloud module, 34
Titanium.Media.openPhotoGallery 

method, 109
Titanium.Media.showCamera method, 

109–110
Titanium.UI.ListView, 200–205
toggleButtonByIDClicked function, 78
transform function, 62, 68
Twitter

about, 197
integrating with social.js module,  

284–290
setting up Developer account, 285

type property, 142–143

U
underscore.js, 50
unfollowUser function, 226
updateFacebookLoginAction 

function, 195
updateFollowers, 224
updateFollowersFriendsLists 

function, 218–219
updating

applications to be friend- and location-aware, 
227–228

feed controller, 104–106, 233–235
Feed view, 104–106
index controller, 181–183
tables, 158–162
user interface to show Map view, 247–251
user model, 177–181
users with Facebook information, 194–195

uploading binary to App Store, 355–356
user accounts

about, 167
account creation with Facebook, 188–196
adding login user interface, 167–177
additional information from, 335–337
creating, 186–188
creating login controller, 184–188
updating index controller, 181–183
updating user model, 177–181

User Accounts feature, 90
user create account method, 178–179
user ID, finding friend relationships based 

on, 212
user interfaces

creating, 99–109
friends, 200–205
platform-specific for switch control,  

338–341
updating to show Map view, 247–251

user login, with user model, 124–125
User Login screen, 82–83
user logout method, 179
user management, 315. See also Settings tab
user models

creating, 116–117
extending to support user-specific friends 

functionality, 213–216
Facebook method in, 189–190
updating, 177–181
user login with, 124–125

user queries, modifying Appcelerator Cloud 
Services sync adapter to support, 209–210

userActionResponseHandler, 187
User.getFriends method, 227, 336
_userInfo parameter, 179
user.js, 117–119
userLoggedInAction method, 181–182
userNotLoggedInAction method,  

181–183
users

displaying all, 218–221
editing information in Header section,  

316–317
editing style of information, 317–321
logging in/out, 117–119, 185–186
management methods, 178–181
registering for push notifications when they 

log in, 301–302
removing friend relationships from,  

212–213
setting profile picture for, 325–329
updating with Facebook information,  

194–195
working with, 223–227

User.showMe method, 335–336

www.it-ebooks.info

http://www.it-ebooks.info/


371I N D E X

V
value property, 186
view folder, 56, 201
views

editing, 316
in Model-View-Controller (MVC), 45–46
styling to match mockups, 137–139

view.xml file, 64–65, 79

W
where clause, 227
widget.js file, 76, 79
widgets, creating, 74–80
widget.xml file, 76–77

X
Xcode, installing, 7–9

www.it-ebooks.info

http://www.it-ebooks.info/


372 B U I L D I N G  C R O S S - P L A T F O R M  A P P S  U S I N G  T I T A N I U M372

www.it-ebooks.info

http://www.it-ebooks.info/


WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

www.it-ebooks.info

http://www.wiley.com/go/eula
http://www.it-ebooks.info/

	Title Page
	Copyright Page
	About the Author
	Contents
	Introduction
	Chapter 1: Installing and Configuring Appcelerator
	Setting Up Titanium
	Installing Titanium on the Mac
	Installing Titanium Studio IDE
	Installing Xcode
	Installing the iOS Simulator
	Installing the Titanium Command-Line Interface to Use an Alternate IDE
	Installing the Android SDK

	Installing Titanium Studio on Windows
	Installing Titanium Studio
	Installing Android SDK

	Summary

	Chapter 2: Introducing Appcelerator Cloud Services
	Using the Appcelerator Cloud Services Console
	Using Appcelerator Cloud Services REST API
	Installing curl on a Device
	Simple Test with the REST API

	Integrating Appcelerator Cloud Services
	Simple Example of Integrating Appcelerator Cloud Services
	Summary

	Chapter 3: Appcelerator Titanium Alloy Overview
	Understanding the Model-View-Controller (MVC) Framework
	Using Appcelerator Alloy with the MVC Framework
	Backbone.js
	Backbone.js in Alloy: Models and Collections

	Using Sync Adapters
	Basic Sync Adapter Construction
	Backbone Model Events

	Model-View Data Binding
	Demo Project for Model View Binding
	Creating the Model File
	Creating the Collection Object

	Data Binding with Models in Appcelerator Titanium Alloy
	Updating the cars.js Controller File
	Creating the New Controller/View for the Detail Display
	Completing the Controller for the Detail View

	Creating Widgets
	Creating a More Complex Widget

	Summary

	Chapter 4: Building a Cross-Platform Social Photo-Sharing Application
	Using Balsamiq to Design Mockups
	Walking Through the Phone-Sharing App
	User Accounts
	Camera
	Photo Uploading
	Social Integration with Facebook 
	Finding Friends
	Commenting and Rating of Media
	Push Notifications
	Application Flow

	Summary

	Chapter 5: Development Process for Cross-Platform Apps
	Creating the Project for This Chapter
	Preconfiguring Appcelerator Cloud Services
	Creating the User Interface
	Creating the Tab Group Files
	Enabling the Camera Functionality on the Feed Tab
	Adding a Custom Table Row to TableView

	Integrating the Camera Functionality into the Application
	Accessing the Device Camera in Appcelerator
	Adding Camera API Calls to Feed Controller
	Revisiting the FeedRow Controller
	Revisiting the Feed Controller to Add the Rows to the Table 
	Adding Some Style to the Feed Table

	Using the Android ActionBar for the Camera Button
	Setting Up the index.xml View to Support the ActionBar
	Modifying the index.xml View to Support the ActionBar

	Adding the Alloy Sync Adapter and Appcelerator Cloud Services
	Creating the User Model
	Extending Alloy Models
	Logging the User In
	Creating Appcelerator Cloud Service Sync Adapter
	Creating the Photo Model
	Modifying the ACS Sync Adapter to Support the Photo Model
	Model and Sync Adapter Working Together

	Summary

	Chapter 6: Integrating Comments
	Creating the Comment Table View Layout
	Rendering the Rows Using a Different View and Controller
	Styling the Views to Match the Mockups

	Adding Logic to the Controllers
	Calling the New Controller from feed.js
	Coding the comment.js Controller
	Cross-Platform Support in Comment View
	Coding the commentRow Controller

	Adding Models and Collections for Querying Comments
	Finishing the Comment Controllers
	The commentRow Controller

	Connecting the Dots . . . Showing the Comment List
	Back to the feed and feedRow Controllers

	Adding a New Comment to a Photo
	Creating a New Comment Controller and View
	Adding Code to the Comment Input Controller
	Back to the Comment.js Controller
	Saving the Comment and Updating the Table

	Deleting Comments 
	Summary

	Chapter 7: Integrating User Accounts with Appcelerator Cloud Services
	Adding the Login User Interface
	Updating the User Model
	User Create Account Method
	User Logout Method
	Additional User Management Methods

	Updating the Index Controller
	Set Up the Basics in the Index Controller

	Creating the Login Controller
	Logging in the User
	Creating the User Account

	Using Facebook for Account Creation
	Setting Up an Application to Use the Facebook Module
	Facebook Button in the login.xml File
	Facebook Method in the User Model
	Facebook Handler in Login Controller
	Updating User with Facebook Information
	Check for Facebook Authentication on Startup
	Logging Out of Facebook

	Summary

	Chapter 8: Working with Friends and Followers
	Creating the CommonJS Library in Alloy
	Adding the Code

	Adding the Friends User Interface
	Finishing Up the ListView with Style

	Introduction to Appcelerator Cloud Services Friends Object
	Modifying the ACS Sync Adapter to Support User Queries
	Modifying the ACS Sync Adapter to Support Friends
	Creating the Friend Relationship
	Finding Friend Relationships Based on a User’s ID
	Removing Friend Relationships from a User
	Extending the User Model to Support User-Specific Friends Functionality

	Integrating ListView Data-Binding with Friends Collections
	Revisiting the friends.xml File

	Integrating ListView Data-Binding with the Friends Controller
	Displaying All Users
	Displaying the Friends List

	Working with User and Friends Lists
	Removing a Friend from the Friends List

	Updating the Application to Be Friend- and Location-Aware
	Summary

	Chapter 9: Working with Maps and Locations
	Associating GPS Information When Saving a Photo
	Modifying the Photo Model
	Getting GPS Information from a Device
	Creating a CommonJS Library for Geolocation
	Updating the Feed Controller to Add Location to a Photo

	Displaying the Photo Location on a Map
	Android Support for Google Maps v2
	Adding the Map Component to MapView XML

	Displaying a Map of Photos Near Your Location
	Querying ACS Photo Objects Using Your Current Location
	Updating the User Interface to Show a Map View
	Changes in the feed.js Controller
	Responding to Clicks on Map Annotations

	Summary

	Chapter 10: Sharing via Facebook, Email, and Twitter
	Creating the CommonJS Library for Sharing Functions
	Facebook Permissions and Reauthorization
	Sharing to the Facebook Wall
	Sharing to the Facebook Album
	Revisiting and Refactoring the Progress Window Library
	Sharing to a Facebook Album

	Sharing an Image as an Email Attachment
	Twitter Integration with the social.js Module
	Setting Up Your Twitter Developer Account
	Adding social.js to Your Project
	Adding the shareImage Function
	Including the social.js Library in the Application
	Adding Functionality to the sharing.js Library

	Summary

	Chapter 11: Push Notifications
	Setting Up Push Notifications on Your Development Platform
	Apple Push Notifications Configuration
	Google Push Notifications Configuration

	Configuring Push Notifications in Appcelerator Cloud Services
	Creating the Push Notifications Library in an Application
	Creating the pushNotifications.js Library
	Getting the iOS Token
	Getting the Android Token
	Registering Callbacks

	Integrating Push in Your Application
	Registering for Push Notifications When the User Logs In
	Sending Notifications Using the Appcelerator Cloud Services Console
	Sending a Push Notification
	Sending a Notification When Posting a Photo
	Sending a Notification When Commenting on Photos
	Sending a Notification When Adding a New Friend
	Unregistering from Push Notifications When Logging Out

	Further Integration of Push Notifications in Your Application
	Summary

	Chapter 12: Settings and User Management
	Getting Started: View, Style, Controller
	Editing the View
	Editing the User Information in the Header Section
	Editing the User Information Style

	Handling Logout on Android and iOS
	Logging the User Out
	Logging Out of Appcelerator Push Notifications
	Logging Out from Appcelerator Cloud Services
	Logging Out from Social Media

	Returning to the Login Screen
	Setting the User’s Profile Picture

	Adding a Few Performance Enhancements
	Returning to the Feed Controller for Performance and UI Enhancement
	Additional Information from the User Account
	Adding Content to the Main View in the Settings Tab
	Platform-Specific User Interface for Switch Control
	Handling the Switch Initialization Values
	Displaying Push Notification Status
	Changing the Push Notification Status

	Summary

	Chapter 13: Going to Market: Deploying to the App Store and to Google Play
	Process Overview
	Registering for a Developer Account
	Signing Your Application
	Creating an App Record and Filling Out Metadata
	Publishing Your Binary to the Store

	iOS App Store Submission Process
	Signing Up for an iOS Developer Account
	Signing Your iOS Application
	Creating an iTunes Connect Record
	Publishing from Titanium Studio

	Uploading Your Binary to the App Store
	Google Play Submission Process
	Signing Up for a Google Play Developer Account
	Generating a Keystore for Publishing

	Publishing to Google Play
	Summary

	Index
	Wiley End User License Agreement


s



