Aaron Saunders

Use Appcelerator’s free and open
source Titanium mobile platform

Create native applications using
JavaScript and the Titanium
framework

Use a cloud service library of
over 20 robust prebuilt common
services to reduce integration
time and risk

Create cross-platform native
mobile applications from a single
code base

Buiding Cross-Platform Apps

using Titanium™, Alloy, anc
Appcelerator® Cloud
Services

WILEY

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Building Cross-
Platform Apps
Using Titanium~,
Alloy, and
Appcelerator®
Cloud Services

WILEY

http://www.it-ebooks.info/

This edition first published 2015

© 2015 Aaron Saunders

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 85SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright,
Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and prod-
uct names used in this book are trade names, service marks, trademarks or registered trademarks of their respective own-
ers. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to
provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that
the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required,
the services of a competent professional should be sought.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates in the United States and/or other countries, and may not be used without written permission. All other trade-
marks are the property of their respective owners. John Wiley & Sons, Ltd. is not associated with any product or vendor
mentioned in the book.

A catalogue record for this book is available from the British Library.
ISBN 978-1-118-67325-6 (paperback); ISBN 978-1-118-67324-9 (ePub); 978-1-118-67322-5 (ePDF)
Setin 10/12.5 ChaparralPro-Light by TCS/SPS

Printed in the United States by Bind-Rite

I dedicate this book to my father, Dennis Francis Saunders Sr., who supported me in my interest
with computers way before computers where commonplace in society. He bought me my first
computer—a Timex Sinclair—and I also remember the TRS-80 from Radio Shack. He passed
away before the book could be finished, but he is the reason I became involved with computers.

www.it-ebooks.info

http://www.wiley.com
http://www.it-ebooks.info/

Publisher’s Acknowledgements
Some of the people who helped bring this book to market include the following:

Editorial and Production Marketing
VP Consumer and Technology Marketing Manager:
Publishing Director: Lorna Mein
Michelle Leete
Assistant Marketing Manager:
Associate Director-Book Content Dave Allen
Management:
Martin Tribe

Associate Publisher:

Chris Webb

Project Editor:
Kezia Endsley

Copy Editor:
Kezia Endsley

Technical Editor:

Chaim Krause

Editorial Manager:
Rev Mengle

Senior Project Editor:
Sara Shlaer

Editorial Assistant:
Claire Johnson

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

AARON SAUNDERS is the CEO/Founder of Clearly Innovative Inc., a minority-owned digi-
tal solutions provider headquartered in Washington DC with offices in New York City. The
firm shapes ideas into viable products and transforms clients’ existing technologies into
stunning solutions. Clearly Innovative is a leader in early adaption and implementation of
cutting edge technologies, from mobile strategy and design to developing innovative web-
based solutions. Clearly Innovative provides support and expertise through services focused
on product strategy, user experience, design, and development.

Aaron is an experienced software developer with over 30 years of experience and has strong
technical, communication, and collaboration abilities. He is highly adept at helping organiza-
tions add business value using mobile and web applications.

Aaron has a BA in Computer Science from Ohio Wesleyan University and an MBA with con-
centrations in Information Technology Strategy and Marketing from the NYU Stern School
of Business.

Acknowledgments

This book would never have been started without the encouragement of Kwasi Frye to keep
pressuring me to respond to requests to write a book.

This book would have never been completed without the patience and understanding of my
wife Andrea Saunders who consistently gave me the time [needed to get this done, which
was above and beyond the long hours of running a small digital agency, when I got home
nights and sometime the whole weekend was spent writing code, reviewing chapters, and
retesting the application for the book.

Thank you to Appcelerator for the platform you provided for me to start Clearly Innovative
on, and thanks to all of the clients we worked with to develop mobile solutions and expand
my knowledge of the Appcelerator platform and mobile application development.

Thanks to the team at Wiley who has been patient with me through the changes in the
underlying Appcelerator platform that caused chapter rewrites, changes in the mobile user
interface that required new screenshots, and delays in scheduling due to personal matters.

Thanks to Chaim Krause for being a great technical reviewer. I hope you learned something
through the process.

www.it-ebooks.info

http://www.it-ebooks.info/

Contents

Introduction. ittt it i ittt it e 1
CHAPTER 1
Installing and Configuring Appeelerator 3
Setting Up Titanium. o 3
Installing Titanium onthe Mac 4
Installing Titanium Studio IDE 4
Installing Xcodeottt 7
Installing the i0S Simulator. 9
Installing the Titanium Command-Line Interface to Use an Alternate IDE. 10
Installing the Android SDKo 10
Installing Titanium Studio on Windows o i, 11
Installing Titanium Studio.t 11
Installing Android SDK.ot 13
SUMMATY .. oo 14
CHAPTER 2
Introducing Appcelerator Cloud Services 15
Using the Appcelerator Cloud Services Console. 17
Using Appcelerator Cloud Services RESTAPL. i 25
Installing curl onaDeviceot 26
Simple Test with the REST APT e 26
Integrating Appcelerator Cloud Services. ...t .. 31
Simple Example of Integrating Appcelerator Cloud Services 34
SUMINATY © o v v vvet ettt ettt ettt e e et et e e 42
CHAPTER 3
Appcelerator Titanium Alloy Overview. 0. 43
Understanding the Model-View-Controller (MVC) Framework 44
Using Appcelerator Alloy with the MVC Framework 47
Backbome js. 50
Backbone.js in Alloy: Models and Collections.c.ooviiiiiei .. 50
USINg SYNc Adapters. . ..o ot 54
Basic Sync Adapter CONStruCtionouuuiitteniet i, 54
Backbone Model Events.......... 55

www.it-ebooks.info

http://www.it-ebooks.info/

vi BUILDING CROSS-PLATFORM APPS USING TITANIUM

Model-View Data Bindingooe i 56
Demo Project for Model View Binding. 56
Creating the Model File 57
Creating the Collection Object. ..ottt e 64

Data Binding with Models in Appcelerator Titanium Alloy 69
Updating the cars.js Controller File oo i, 69
Creating the New Controller/View for the Detail Display....................... 70
Completing the Controller for the Detail View..........ooo... 71

Creating WIdgets. . ..o oottt 74
Creating a More Complex Widget.oiitiiiiiiii it 78

SUIMINATY © o vt vv ettt ettt ettt e e e et e e 80

CHAPTER 4
Building a Cross-Platform Social Photo-Sharing Application. 81

Using Balsamiq to Design Mockups. 81

Walking Through the Phone-Sharing App. 89
USEr ACCOUNLS . .ottt ettt e et e e e 90
CaIMera . .o 90
Photo Uploadingo vttt 90
Social Integration with Facebook o 91
Finding Friends 91
Commenting and Ratingof Media 91
Push Notifications. oottt 92
Application Flowo 92

SUMMATY . oot e e e e e 92

CHAPTER 5
Development Process for Cross-Platform Apps 93

Creating the Project for This Chapter. 93

Preconfiguring Appcelerator Cloud Services.oviiiiiiie i, 96

Creating the User Interface ot 99
Creating the Tab Group Files. oo 99
Enabling the Camera Functionality on the Feed Tab.......................... 104
Adding a Custom Table Row to TableView, 106

Integrating the Camera Functionality into the Application....................... 109
Accessing the Device Camera in Appcelerator., 109
Adding Camera API Calls to Feed Controller.oooiiiii ... 110

www.it-ebooks.info

http://www.it-ebooks.info/

TABLE OF CONTENTS

Revisiting the FeedRow Controller. 111
Revisiting the Feed Controller to Add the Rows to the Table 112
Adding Some Style to the Feed Table........... o i, 112
Using the Android ActionBar for the Camera Button............... 114
Setting Up the index.xml View to Support the ActionBar...................... 115
Modifying the index.xml View to Support the ActionBar...................... 115
Adding the Alloy Sync Adapter and Appcelerator Cloud Services 116
Creating the User Model. o 116
Extending Alloy Models 117
Loggingthe UserIn.o e 117
Creating Appcelerator Cloud Service Sync Adapter, 120
Creating the Photo Model i 121
Modifying the ACS Sync Adapter to Support the Photo Model 122
Model and Sync Adapter Working Together............ 124
SUIMNIMATY © .+ v v v ettt ettt 134
CHAPTER 6

Integrating Commentsottt ittt 135
Creating the Comment Table View Layout.............ooiiiiiiien.. 135
Rendering the Rows Using a Different View and Controller. 136
Styling the Views to Match the Mockups i i 137
Adding Logic to the Controllers i 139
Calling the New Controller from feed.js............, 139
Coding the comment.js Controller, 140
Cross-Platform Support in Comment View. 140
Coding the commentRow Controller 142
Adding Models and Collections for Querying Comments 142
Finishing the Comment Controllers i, 146
The commentRow Controller.o 147
Connecting the Dots . . . Showing the Comment List............................ 148
Back to the feed and feedRow Controllers........., 149
Adding a New Comment toaPhoto......... i 152
Creating a New Comment Controllerand Viewoo.... 152
Adding Code to the Comment Input Controller......................oooi... 154
Back to the Comment.js Controller. i, 157
Saving the Comment and Updating the Table 158
Deleting COMIMENTSt v ittt ettt e e e 163
SUMMATY .o oo 166

www.it-ebooks.info

Vil

http://www.it-ebooks.info/

viii

BUILDING CROSS-PLATFORM APPS USING TITANIUM

CHAPTER 7
Integrating User Accounts with Appcelerator Cloud Services. 167
Adding the Login User Interface.ttt 167
Updating the User Model. oo 177
User Create Account Method.o o i 178
User Logout Method. 179
Additional User Management Methods.o i, 180
Updating the Index Controller 181
Set Up the Basics in the Index Controller 181
Creating the Login Controller.o i 184
Logging in the User.t e 185
Creating the User Account.oouiit i 186
Using Facebook for Account Creationc.ouiiiiniiiiiiininennneen.. 188
Setting Up an Application to Use the Facebook Module....................... 188
Facebook Button in theloginxml File oo, 189
Facebook Method in the User Model 189
Facebook Handler in Login Controller. 190
Updating User with Facebook Information.........., 194
Check for Facebook Authentication on Startup 195
Logging Out of Facebook 196
SUMIMATY . .o oottt e e 196

CHAPTER 8
Working with Friends and Followers 197
Creating the CommonJS Libraryin Alloy oot 197
Addingthe Codeo i 198
Adding the Friends User Interfaceooiii i 200
Finishing Up the ListView with Style......... i 205
Introduction to Appcelerator Cloud Services Friends Object...................... 208
Modifying the ACS Sync Adapter to Support User Queries 209
Modifying the ACS Sync Adapter to Support Friendsoo. . 210
Creating the Friend Relationship oo 211
Finding Friend Relationships BasedonaUser'sID 212
Removing Friend Relationships fromaUser............ iiian. 212
Extending the User Model to Support User-Specific Friends Functionality. 213
Integrating ListView Data-Binding with Friends Collections. 216
Revisiting the friends.xml File. o 216

www.it-ebooks.info

http://www.it-ebooks.info/

TABLE OF CONTENTS

Integrating ListView Data-Binding with the Friends Controller................... 217
Displaying AL USETSottt e 218
Displaying the Friends Listo it 221

Working with User and Friends Lists. 223
Removing a Friend from the Friends Listo o oioa. 226

Updating the Application to Be Friend- and Location-Aware 227

SUMMATY .« . oot e e e e 228

CHAPTER 9
Working with Maps and Locations 229

Associating GPS Information When Savinga Photo....................... 229
Modifying the Photo Model. 229
Getting GPS Information fromaDeviceo i 230
Creating a CommonJS Library for Geolocation 230
Updating the Feed Controller to Add Locationtoa Photo 233

Displaying the Photo LocationonaMapooiiiiiiiiiiiiii .. 235
Android Support for Google Maps v2. 235
Adding the Map Component to MapView XML. ..., 238

Displaying a Map of Photos Near Your Location., 245
Querying ACS Photo Objects Using Your Current Location.................... 246
Updating the User Interface to Showa Map View, 247
Changes in the feed.js Controller i 251
Responding to Clicks on Map Annotations.covueiireenienne.n. 256

SUIMNIMATY © .+ vt vttt ettt 264

CHAPTER 10
Sharing via Facebook, Email, and Twitter 265

Creating the CommonJS Library for Sharing Functions. 265

Facebook Permissions and Reauthorization., 269
Sharing to the Facebook Wall 271
Sharing to the Facebook Albumo i 273
Revisiting and Refactoring the Progress Window Library...................... 276
Sharing to a Facebook Album 279

Sharing an Image as an Email Attachment........ot 280

Twitter Integration with the social.js Module 284
Setting Up Your Twitter Developer Account.c..ooiviiiiiiiiiea .. 285
Adding social.js to Your Project. 285

www.it-ebooks.info

X

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Adding the sharelmage Function o i i 285
Including the social.js Library in the Application, 287
Adding Functionality to the sharing.js Library, 288
SUMMATY .« . oo e e e e e 290
CHAPTER 11
Push Notificationso v ittt ittt ittt i 291
Setting Up Push Notifications on Your Development Platform 292
Apple Push Notifications Configurationoviiiiinieinea.n.. 292
Google Push Notifications Configuration ..., 292
Configuring Push Notifications in Appcelerator Cloud Services 292
Creating the Push Notifications Library in an Application. 293
Creating the pushNotifications.js Library, 295
Getting the 10S Token 295
Getting the Android Token 297
Registering Callbacks. 298
Integrating Push in Your Applicationo 300
Registering for Push Notifications When the User LogsIn..................... 301
Sending Notifications Using the Appcelerator Cloud Services Console 303
Sending a Push Notification. 304
Sending a Notification When Postinga Photo 306
Sending a Notification When Commenting on Photos 308
Sending a Notification When Addinga New Friend. 310
Unregistering from Push Notifications When Logging Out 312
Further Integration of Push Notifications in Your Application.................... 313
SUMMATY .o oo 314
CHAPTER 12
Settings and User Managementcoviveeen.. 315
Getting Started: View, Style, Controller. i 315
Editing the View. 316
Editing the User Information in the Header Section.................. 316
Editing the User Information Style., 317
Handling Logout on Android and iOS. 321
Logging the User OUlttt e 323
Logging Out of Appcelerator Push Notificationscooiiiiii... 323

www.it-ebooks.info

http://www.it-ebooks.info/

TABLE OF CONTENTS

Logging Out from Appcelerator Cloud Servicescoviiiiiiiino... 324
Logging Out from Social Media.t 324
Returning to the Login Screeno 324
Setting the User’s Profile Picture........ o i i 325
Adding a Few Performance Enhancements 329
Returning to the Feed Controller for Performance and Ul Enhancement 333
Additional Information from the User Account............ ... o... 335
Adding Content to the Main View in the Settings Tab 337
Platform-Specific User Interface for Switch Control 338
Handling the Switch Initialization Values o oot 341
Displaying Push Notification Status.ouiiiiiii e 344
Changing the Push Notification Status ..., 346
SUMMATY .. oo e 347
CHAPTER 13
Going to Market: Deploying to the App Store
andtoGoogle Play 349
Process Overview i 349
Registering for a Developer Accountot .. 349
Signing Your Applicationot 349
Creating an App Record and Filling Out Metadata.ooiiii... 350
Publishing Your Binary to the Store o i 350
iOS App Store Submission Process. i 350
Signing Up for an iOS Developer Account.ooviiiiiiiiienien. 350
Signing Your i0S Application.oiut it 350
Creating an iTunes Connect Record, 351
Publishing from Titanium Studio 351
Uploading Your Binary to the App Store. ... 355
Google Play Submission Process.ouiiiiiii i 356
Signing Up for a Google Play Developer Account.c.oovviiiiina .. 356
Generating a Keystore for Publishing. oo 358
Publishing to Google Play 359
SUMIMNATY © o v vv ettt ettt e 362
Index. . oo i ittt i i i i i i i e e e 363

www.it-ebooks.info

xi

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

THIS BOOKIS a high-level overview of using Appcelerator Titanium Alloy and Appcelerator
Cloud Services to build native, cross-platform solutions in JavaScript. There is and will prob-
ably for a long time be an argument about the benefits of cross-platform solutions like
Appcelerator, yet competitors continue to enter the field.

First and foremost, Appcelerator Titanium Alloy is not Phonegap; Appcelerator renders
native user interfaces and provides a robust and extensible framework of APIs to interact
with the native device on i0S, Android, Blackberry, and Windows Phone. Phonegap uses the
mobile device’s web browser to render the user interface of the application and a collection of
modules to interact with the device’s native capabilities. It is an acceptable solution for some,
but I choose to focus on Appcelerator in my business, Clearly Innovative, because I believed,
from a business and cost perspective, that we could provide the client with the native perfor-
mance at a much better price point.

This book walks you through the process of building a photo-sharing application for the iOS
and Android platforms on the Appcelerator Platform using the powerful new Alloy frame-
work. This application integrates Appcelerator Platform’s MBaaS (mobile backend-as-a-
service) and Appcelerator Cloud Services to create users, store photos, and implement push
notifications in mobile applications.

The Appcelerator Community is very active through the Q&A forums, specific websites such
as http://www.tidev.io/, and community-driven conferences like http://ticonf.
org/. The Appcelerator company website documentation, training videos, and open sourced
samples can provide you with additional supporting materials to help you get started in
building your own great solution.

www.it-ebooks.info

http://www.tidev.io/
http://ticonf.org/
http://ticonf.org/
http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Building a great mobile solution is a fun yet sometimes challenging experience. It is my hope
that this book makes the process a bit more enjoyable and manageable.

—Aaron K. Saunders
@aaronksaunders

https://github.com/aaronksaunders

www.it-ebooks.info

https://github.com/aaronksaunders
http://www.it-ebooks.info/

Chapter
Installing and Configuring
Appcelerator

THIS CHAPTER BRIEFLY outlines the installation process for the Appcelerator tools.
More detailed step-by-step instructions can be found on the Appcelerator site at
http://docs.appcelerator.com/titanium/3.0/#%21/guide/Setting up Studio-
section-37540095 SettingupStudio-installingstudio.

Setting Up Titanium

To install Titanium Studio, download the installer from the Appcelerator website. You will
need to log in using your Appcelerator credentials, so register for an account if you haven't
done so already.

After launching Titanium Studio, you will need to configure native SDKs for each platform you
want to support. Android works on both Mac and PC, but to develop for iOS you will need a
Mac. See http://docs.appcelerator.com/titanium/3.0/#!/guide/Quick Start
for more information.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/3.0/#%21/guide/Setting_up_Studio-section-37540095_SettingupStudio-installingstudio
http://docs.appcelerator.com/titanium/3.0/#%21/guide/Setting_up_Studio-section-37540095_SettingupStudio-installingstudio
http://docs.appcelerator.com/titanium/3.0/#!/guide/Quick_Start
http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Installing Titanium on the Mac

To install Titanium Studio on the Mac, download Titanium Studio from Appcelerator and
install it. Then install Xcode and the Android SDK. The following sections cover this process
in detail.

Installing Titanium Studio IDE

1. Register for an account at www . appcelerator.com.

2. Download Titanium Studio at www . appcelerator.com/titanium/download, as
shown in Figure 1-1. The download will begin automatically.

1. OPEN PACKAGE

After Titanium Studio automatically
downloads, open and run the
installer package.

If you still need Studio, you can
download your version here:

Mac | Windows | Linux 32 |
Linux 64

FIGURE 1-1: Downloading Titanium Studio from Appcelerator.

www.it-ebooks.info

http://www.appcelerator.com
http://www.appcelerator.com/titanium/download
http://www.it-ebooks.info/

CHAPTER 1 INSTALLING AND CONFIGURING APPCELERATOR

3. Open the disk image and drag the Titanium Studio folder into Applications, as shown
in Figure 1-2.

FIGURE 1-2: Dragging the Titanium Studio folder into the Applications folder.

4. Open Applications & Titanium Studio = TitaniumStudio, as shown in Figure 1-3.

[=] Desktop

© Time Machine
. Titanium Studio

full_uninstall.txt

& notice.html

® 00 & Titanium Studio e
(> &g = i | | (x| 2 || o | Q
FAVORITES Sublime Text (1] configuration

; All My Files [E8 System Preferences (] dropins “

@ AirD, / Textedit ¢ epl-v10.html

% AirDrop A TextWrangler (L] features TitaniumsStudio

pplication
494 KB

- i 12/19/13,7:34 PM
3 Utilit 2
[Documents e ez i 12/19/13,7:34 PM
V¢ VirtualBox (] plugins 2/10/13, 7:34 PM
© Downloads A Wireshark readme 30
(@ wunderist
- [Xcode version.txt
FIGURE 1-3: Launching Titanium Studio.

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

5. Check the box to use this folder as the default, and then click OK. See Figure 1-4.

8.0.0 Workspace Launcher

Select a workspace

Titanium Studio stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: ‘/Uséré]birna&é/b&urﬁénél‘r'itrar{i'ur;n'_srt;lciié;j\fofksb?ce' v | | _Browse...

Use this as the default and do not ask again

FIGURE 1-4: Selecting a workspace.

After completing Step 5, your projects will be saved in Documents/Titanium Studio
Workspace by default.

6. Log in using the account you created earlier. See Figure 1-5.

o | do have an account with Appcelerator

. | don't have an account with Appcelerator

titanium

STOENe

FIGURE 1-5: Logging in to use Titanium Studio.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 INSTALLING AND CONFIGURING APPCELERATOR

Installing Xcode

Titanium Studio opens the Dashboard by default. You can reach the Dashboard again by
clicking on the red home icon shown in Figure 1-6.

©® O O Studio - Titanium Studio Dashboard - Titanium Studig.=./Users/testuser/Documents/Titanium_Studio_Workspace |
- (3 Run ~ Selecta project (2]

(Q Quick Access)

Is!

[Projec.. x | = O | | @ Dashboard x
; g 2 Have you built an app on Titanium?
L . Vel
‘ md’ @ Add it to our App Showcase
} Welcome back, Robert Chen! [:
MY APPS | MY ACCOUNT

{0} Develop

&

v Customize Your Environment

oz : =
= Outline x =]
o

= Welcome! Click on the radio buttons to switch your default settings, and configure Titanium Studio to bett

An outline is not available. g
Default Titanium Studio Theme (O Light Dar

FIGURE 1-6: The Titanium Studio Dashboard is always accessible by clicking the red home icon.

1. Click the Get Started tab.

2. Scroll down to the Configure Native SDKs section and select iOS SDK. Click the Install
or Update iOS SDK button on the left. See Figure 1-7.

€ Dashboard x

v Configure Native SDKs

Installing native SDKs allows Studio build and deploy your app

to devices. Select a platform and to begin the setup process. ios configuration details.

. Android SDK An iOS SDK is missing. Titanium supports the following
range of iOS versions:

. eSS Minimum iOS version: 5.0
. BlackBerry SDK Maximum iOS version: 7.9.X
(@ Tizen SDK Install or Update iOS SDK

FIGURE 1-7: Selecting iOS SDK from the Configure Native SDKs section.

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

3. On the next window, click the Configure button. See Figure 1-8. This will launch the
Mac App Store and take you to the Xcode download page, as shown in Figure 1-9.

600
Platform Configuration
Download, install, and configure required SDKs for the mobile platforms you want to develop for.
() Android Not Yet Configured Settings ~
» (] Blackberry Not Yet Configured Settings ~
g ™ ios Not Yet Configured -
b () Tizen Not Yet Configured Settings ~

FIGURE 1-8: Platform Configuration window (i0OS).

! A A L N
for Mac iPhone and iPac
[or Viac, IFnone, and Irad.

e

FIGURE 1-9: Installing Xcode from the Mac App store.

4. When it’s finished, there should be a green checkmark next to iOS SDK, as shown in
Figure 1-10.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

v Configure Native SDKs

Installing native SDKs allows Studio build and deploy your app

to devices. Select a platform and to begin the setup process. Android conﬁgura’tion details.

. Android SDK One or more pieces are missing from the Android
SDK. It may be that the Android SDK is already

[i0oS sDK installed and Titanium Studio cannot locate the
directory, or it may be that some additional

. BlackBerry SDK components need to be installed.

. Tizen SDK Items required:

* An Android SDK is missing. Titanium requires
Android platform: 2.3.3 or above.

¢ Platform-tools version 10.

¢ SDK Tools version 14.

 Add-On addon.+google.+apis.+[10]

Install or Update Android SDK

FIGURE 1-10: Configuring of the Native SDK section is complete.

5. Launch Xcode and accept the license agreement.

Installing the iOS Simulator

INSTALLING AND CONFIGURING APPCELERATOR

You will use the iOS Simulator regularly, so it’s important to install it next. Open Xcode and
navigate to Xcode = Preferences & Downloads. Select each available version of the iOS
Simulator, as shown in Figure 1-11. Click the Check and Install Now button.

e 06 Downloads

©® @ A

et 7 N
General Accounts Behaviors Navigation Fonts & Colors Text Editing Key Bindings Source Control }Qownlogds

QI
[l

Locations

¥ Components

Wl i0S 7.0 Simulator
Wl 0S 6.1 Simulator

¥ Documentation

g 05 7.1 doc set

i@ 05X 10.8 doc set

{g OSXv10.9 doc set

g Retired Documents Library
g Xcode 5.1 doc set

[_] Check for and install updates automatically

| Check and Install Now |

FIGURE 1-11: Downloading the iOS Simulator in the Xcode Preferences section.

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Installing the Titanium Command-Line
Interface to Use an Alternate IDE

If you choose not to use the Titanium Studio IDE, you will need to set up Titanium on the
command line. To do so, open Terminal and run the following two commands.

Node comes with Titanium Studio, so npm should work.

sudo npm install -g alloy

and

sudo npm install -g titanium

Installing the Android SDK

In the Titanium Studio Dashboard, select Android SDK and click Install or Update Android
SDK. Then expand the Settings drop-down and select the Android API levels you want to
support. Then click Configure. Note the Android SDK location: /Users/<usernames/
Library/android-sdk-macosx/. See Figure 1-12.

6 .06
Platform Configuration
Download, install, and configure required SDKs for the mobile platforms you want to develop for.
™ Android Not Yet Configured Hide =
Android SDK Location: [/Users/testuser/ubrary/android—sdk—macosx] [Browse.. |

Android SDKs:
() Android 4.4.2 (| Android4.3 [| Android 4.2.2 (¥ Android 4.1.2 [] Android 4.0.3 [] Android 4.0
() Android 3.2 () Android 3.1 () Android 3.0
(_) Android 2.3.3

FIGURE 1-12: Installing Android SDKs in the platform configuration.

m Library is a hidden folder, but you can reach it using Finder > Go and then holding down the
Option key to reveal its location.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 INSTALLING AND CONFIGURING APPCELERATOR 11

Installing Titanium Studio on Windows

To install Titanium Studio on Windows, download Titanium Studio from Appcelerator. Then
install the Android SDK (Xcode requires a Mac, so you will not be able to deploy to 10S using
Windows). The following sections cover this process in detail.

Installing Titanium Studio

Register for an account at www.appcelerator.com and then download Titanium Studio
at www.appcelerator.com/titanium/download. See Figure 1-13.

1. OPEN PACKAGE

After Titanium Studio automatically
downloads, open and run the
installer package.

If you still need Studio, you can
download your version here:

Mac | Windows | Linux 32 |
Linux 64

FIGURE 1-13: Downloading Titanium Studio from Appcelerator.

1. Launch the downloaded executable and accept all the defaults in the install wizard.
Titanium will install the Java Development Environment, Git, and Node. See
Figure 1-14.

www.it-ebooks.info

http://www.appcelerator.com
http://www.appcelerator.com/titanium/download
http://www.it-ebooks.info/

12 BUILDING CROSS-PLATFORM APPS USING TITANIUM

% Titanium Studio Setup P

Welcome
Welcome to Titanium Studio Setup.

Welcome to the Titanium Studio installer.

Click Next to start.

Titanium Studio

FIGURE 1-14: Titanium Studio Setup wizard.

2. After installation, launch Titanium by choosing Start & All Programs = Appcelerator &
Titanium Studio. Check the box to accept the default folder location and click OK. See
Figure 1-15.

m After completing Step 2, your projects will be saved in your Documents\Titanium Studio
Workspace) folder by default.

Select a workspace

Titanium Studio stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: C:\Users\Username\Documents\Titanium_Studic_Workspace -

Use this as the default and do not ask again

[OK] 1 Cancel

FIGURE 1-15: Selecting a workspace location.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 INSTALLING AND CONFIGURING APPCELERATOR

3. Login using the account you created earlier. See Figure 1-16.

titanium
STUENC

FIGURE 1-16: Logging in to use Titanium Studio.

Installing Android SDK

Dashboard opens by default and you can come back to it later by clicking on the red
home icon.

1. Scroll to the bottom of Dashboard to the Configure Native SDKs section.
2. Click Android SDK.
3. Click the Install or Update Android SDK button, as shown in Figure 1-17.

f&@ studio - Titanium Studio Dashboard - Titanium Studio o S[B] X
File Edit Navigate Search Project Commands Run Window Help
- Orir - P ol e

Quick Access 5 |
& Project Ex.. = O || @ Dashboard

v Configure Native SDKs

Installing native SDKs allows Studio build and deploy your app to

devices. Select a platform and to begin the setup process. Android configuration details

@8 Android SDK One or more pieces are missing from the Android
SDK. It may be that the Android SDK is already

{8 BlackBery SDK installed and Titanium Studio cannot locate the
directory, or it may be that some additional

(@ Tizen SDK components need to be installed

ltems required

SDK

i

B Outline =g

An outline is not available. Install or Update Android SDK

Y Robert Chen

FIGURE 1-17: The Configure Native SDKs section.

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

4. Expand Settings and check the boxes for each Android API level you want to support.

5. Click the Configure button. See Figure 1-18.

a1
&

&

Platform Configuration

o

Download, install, and configure required SDKS for the mobile platforms you want to develop for.

[/ Android Not Vet Configured Hide~ %
Android SDK Location: C\android-sdk-win
Android SDKs:
[*]Android44.2 [“]Android43 [7]Android4.22 [V]Androidd12 [7]Android4.03 (7] Android 4.0
[Android32 []Android31 (7] Android 3.0
["] Android 233
B [Blackberry Not Yet Configured Settings ~
=
n [C]Tizen Not Yet Configured Settings ~
-

FIGURE 1-18: Installing Android SDKs in the platforms you want to support.

Note the Android SDK default location of C: \android-sdk-win. You may need to reopen
Titanium Studio to refresh the Android SDK status. Look for the green checkmark.

Summary

To set up your environment, download and install Titanium Studio. On the Get Started tab
in the Dashboard, you can configure native SDKs. The native SDKs enable you to deploy your
app to platforms such as Android and iOS. The Android SDK link allows you to download and
install different Android SDK versions. And on Mac, the iOS SDK link opens the Xcode
download page on the Mac App Store. Use the Dashboard to verify whether each SDK was
installed properly. When you're all set up properly, you're ready to move on to Chapter 2,
where you learn about all that Appcelerator Cloud Services has to offer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter
Introducing Appcelerator
Cloud Services

ONE OF THE bigger challenges in building a complex mobile application comes from an
unexpected source, building the supporting backend systems for the application. The major-
ity of applications out there interact with web services or databases to save or retrieve infor-
mation for presentation in a mobile application. As a mobile developer, you need to find a
solution since your goal is to develop mobile solutions, not build and maintain backend ser-
vices and perform I'T management and support.

The traditional approach is to build this backend system, find a place to host it, and then
provide the appropriate resources to support it. Taking that approach in the mobile solutions
world is cost-prohibitive, is an ongoing maintenance challenge, and is a financial burden on
the mobile solution even before the application is launched.

Appcelerator Cloud Services provides a complete framework for integrating the backend ser-
vices into your mobile application. These services are hosted and maintained by Appcelerator,
the APIs are tested and supported by Appcelerator, and handling of the appropriate scaling
as needed is also their responsibility. These Appcelerator-provided services enable you to
create rich immersive mobile applications. You can extend the application’s services with the
Node .ACS product and most importantly leverage the infrastructure for the backend pro-
vided by Appcelerator.

Key features of the Appcelerator Cloud Services are available out of the box. For example,
comments, ratings, and reviews are supported through the API with no additional coding on
the mobile developer’s side. Common location services such as check-ins and geo-querying
are provided for all objects in the system. Photos and images are supported with built-in

www.it-ebooks.info

http://www.it-ebooks.info/

16

BUILDING CROSS-PLATFORM APPS USING TITANIUM

resizing, and blob storage comes ready to use. If the predefined objects do not meet your
needs, you can save custom objects structured like JSON documents directly into the data
store. Figure 2-1 shows all Appcelerator Cloud Services’ pre-built objects.

© 06 ' A quickst % | AYoura; x | A Appcel % | A Titaniu % | A Your A %/ A Cloud | x| [bulk lo: % | [Minbox (% | Minbox (% |\ jQuery. % "
« C | [) www.appcelerator.com/cloud)key-features/ o E =
[Appcelerator (3 GoSquared €F) Deployd [HD 25 Originals - 5 A Building Native Mot L] GRAILS (] node » (L] Other Bookmarks.

Products Developers Enterprise Partners Customers Company Contact SIGN IN -

ACS Pre-built Services - L

—
L g

Below is the list of 20 pre-built common services that are both proven and robust to reduce development time and risk. Click on a service to
get more information.

aa
n Users n Photos = = = Custom Objects
(X)
Push Notifications Emails ® KeyValues
o0
Q Places i Status % Posts
l Clients (9) Social Integration Check-Ins
q Chat Photo Collections ” Ratings, Reviews, & Likes
a JoUY _‘j
Access Control Lists].B Events Files
! Friends E Messages

Aapp:eleramr' ¥y f ® N m

help & support privacy policy legal information

FIGURE 2-1: All of the Appcelerator Cloud Services’ pre-built objects.

An overview of Appcelerator Cloud Services can be found on the Appcelerator website at
http://www.appcelerator.com/cloud/.

www.it-ebooks.info

http://www.appcelerator.com/cloud/
http://www.it-ebooks.info/

CHAPTER 2 INTRODUCING APPCELERATOR CLOUD SERVICES

It is also important to know that even though you are using Appcelerator Cloud Services to
integrate the Appcelerator Titanium mobile application, the framework provides a REST-
based API, an iOS, and an Android native SDK that can be used for creating native
applications.

Using the Appcelerator Cloud Services Console

To become more comfortable with Appcelerator Cloud Service, you are going to take a look at
the Developer Console before you do any coding. You need to create an account at https://
my .appcelerator.com/auth/signup. Figure 2-2 shows the sign-up page.

3 Clearly Innovative » Bleg Ar- % £ Sign Up for an Appcelerator %

€« C' G https://my.appcelerator.com/auth/signup ”: - @ =
[Appeelerator (= GoSquared €9 Deployd [E] HD 25 Originals - 5 A Building Native Mot (] GRAILS] node (f Main (Appcelerator) » (] Other Bookmarks

Products Developers Enterprise Partners Customers Company Contact

Signup

First Name (required)
Please enter a first name.

Last Name (required)

Email Address (required)

Password (required)

Signup is completely free!

Create rich native iOS, Android, hybrid, and mobile web apps from a single

JavaScript-based SDK. Award winning Appcelerator Titanium empowers you Verify Password (required)

to create world class apps with few resources and significantly less coding

time.

To access Appcelerator downloads and online services, you need to create a | agree to the terms of service and privacy policy

free Appcelerator Network account. You'll use this account to activate

«capabilities in our IDE, review your application's analytics, receive support

and education from Appcelerator and our developer community, and much Sign Up Already have an account?
more.

What's in the Appcelerator Titanium Platform?

Cross-platform mobile development support

Create iOS, Android, and mobile web apps from a single code base
Get to market faster than developing in Objective-C or Java

Create compelling user experiences with cloud services like push
notifications and check-ins

Tap into a community of 300,000 developers worldwide

FIGURE 2-2: The Appcelerator developer’s sign-up page.

www.it-ebooks.info

17

https://my.appcelerator.com/auth/signup
https://my.appcelerator.com/auth/signup
http://www.it-ebooks.info/

18 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Follow these steps to create an account:

1. Enter your information and click the Sign Up button. You should be forwarded to the

developer’s landing page. On the landing page is assorted information available to
developers.

2. Click the link entitled Create an ACS App from the section called “Getting Started with
ACS” on the developer’s resources/landing page. Figure 2-3 shows this developer’s

landing page.
L]
e6e6e ¥ Clearly Innovative » Blog Are % | £\ Resources x L
& = C | https://my.appcelerator.com/resources f:j - K@ =
(] Appcelerator (Z GoSquared &) Deployd [£] HD 25 Originals - 5 A Building Native Mot [] GRAILS [node (F Main (Appcelerator) » [] Other Bookmarks

Products Developers Enterprise Partners Customers Company Contact

Resources

Developer Blog Q&A DevLink
Keep up with the latest news and Be part of community forum, ask Get access to Titanium Developers

happenings on our Developer Blog. questions and answer questions. around the world.

Titanium Docs Yo
S
Explore Titanium Documentation. Learn how to build the kitchen A Y App
sink, integrate a module, ACS functions...and more!
Titanium Quick Start #8 Get Started with Titanium
ACS Docs 1. Download Titanium Studio
. . Mac | Windows | Linux 32 | Linux 64
Read up on Appcelerator Cloud Service documentation and leam
how to integrate location, places, user posts and more into your 2. Configure your environment for mobile development
application.

3. Create your first app with Titanium Studio
ACS Quick Start

Video Tutorials &8 Get Started with ACS
’ See hands-on demenstrations on building application design

functions, how to integrate modules directly from the experts who

built Titanium, and lessons from top Titanium Developers.

— 100% Profile Completeness LUpdate

Watch videos

Titanium Certification
* Download your badges and certificates below.
Badges: TCAD | TCMD | Titan

FIGURE 2-3: The Appcelerator developer’s landing page.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 INTRODUCING APPCELERATOR CLOUD SERVICES 19

3. On the Register A New App page, shown in Figure 2-4, enter a name and a brief
description for your application. After the information is entered, click the Register

App button.
666 % Clearly Innovative » Blog Ar. % | £\ Appcelerator Cloud Services % =
L ' [cloud.appcelerator.com/apps/new '::'_’ - K@ =
(] Appeelerator (% GoSquared € Deployd HD 25 Originals - 5 A Building Native Mok [GRAILS [node (F Main (Appcelerator » [] Other Bookmarks

Products Developers Enterprise Partners Customers [ENY Contact

Register A New App

App Name:

Description:

FIGURE 2-4: The Register A New App page.

If you created an app called wileyone, as the example here does, the resulting screen
should look like Figure 2-5.

The left column provides basic overview information about your application and the
right column shows the complete list of the predefined objects. You are going to create
a user object first. Because most activities you will perform with Appcelerator Cloud
Services require a user login, it’s best to get that out of the way first.

4. Click on the link titled Users (0) at the bottom of the app page. The (0) represents
the number of existing objects of that type.

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

0686 ¥ Clearly Innovative » Blog Arc % |/ Appcelerator Cloud Services L3
&= G | [doud.appcelerator.com /apps/RwjYjBGtAKDUNGUZPnAH/BmO3IiKH 4Xt 2l E =
(] Appcelerator (% GoSquared (B Deployd [HD 25 Originals - 5 A Building Native Mot (L] GRAILS [node F Main (Appcelerator » [Other Bookmarks

Products Developers Enterprise Partners Customers Company Contact

My Apps / wileyone E==3
_ Get Support ©
il v GoToDocs ©

wileyone Details Manage Data in wileyone
Status Running Chats (0)
Description Checkins (0)
APP Key Collections (0)
Show OAuth Credentials Events (0)
Export Data? P Data Files (0)
Friends

Key-Values (0)

Messages (0)

Custom Objects (0)

Photos (0)

Places (0)

Posts (0)

Reviews (0)

Statuses (0)

Users (0)

FIGURE 2-5: The Appcelerator Cloud Services app page.

Figure 2-6 shows the screen displaying the results of the query for all user objects.
Since you have not created any yet, the screen is empty. On the top left, notice the All
Users and Admin Users tabs. Don’t worry about admin users, as they are covered later,
when you create user accounts for testing the application.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 INTRODUCING APPCELERATOR CLOUD SERVICES

006 ¥ Clearly Innovative » Bloc x| £\ Appeelerator Cloud Serv » | g StubHub Go Together x mTi:kEls | Washington Wi x NBA Tickets - The Offic. x

«

C | [cloud.appcelerator.com/RwjYjBCtAkDUNGUZPnAHIBmO3IjKH4Xt/users e > Eﬁ =

[Appcelerator (& GoSquared €%) Deployd HD 25 Originals - 5 A Building Native Mot (] GRAILS [node F Main (Appcelerator » [] Other Bookmarks

Products Developers Enterprise Partners Customers Company Contact

My Apps / wileyone | Deveiopment |

Get Support
@ Back to App Management GoToDocs ©
m Admin Users
Users in wileyone Create a User
users will appear here after being created.
Perpage:| 10

Total 0 results was found.

FIGURE 2-6: The Appcelerator Cloud Services new user page.

5.

6.

Next, click the Create a User button. Figure 2-7 shows the user input page you'll see

next.

Take a look at the input fields. You can see all the work and thought that went into
defining the commonly used fields for users of the potential mobile application. If you
need fields that are not included, you can extend the object using the custom_fields
property, which is covered in more detail later, when you are extending objects in
Appcelerator Cloud Services.

You can enter some basic data for the user in order to see how quickly the console gets
going. Just enter an email address, username, and password. Figure 2-8 shows this

page with some sample data.

www.it-ebooks.info

21

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Create a User D

Email

Username

Password *

Password Gonfirmation
First name

Last name

Role

Select photo or photo id Select Photo From Local Select Exsting Photo

Geo coordinates ? Longitude Latitude

Custom fields

FIGURE 2-7: Creating a new user.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 INTRODUCING APPCELERATOR CLOUD SERVICES 23

Create a User e
Email wileyonetest@clearlyinnovative.com
Username wileyonetest@clearlyinnovative.com
Password* sesssseesees
Password Confirmation* |essessssseny
First name
Last name
Role
Tags ‘ ‘
Geo coordingtes ? Longitude Latitude ﬁ
Custom fields ﬁ

FIGURE 2-8: The New User Input page with sample data entered.

7. When you are done entering the data, click the Submit button to save the content to
Appcelerator Cloud Services. Figure 2-9 shows the All Users tab after creating the
new user.

www.it-ebooks.info

http://www.it-ebooks.info/

24

BUILDING CROSS-PLATFORM APPS USING TITANIUM

066 5 Clearly Innovative » Bloc % | A\ Appeelerator Cloud Ser. x | [j@iStubHub Go Together x [Tickets | Washington Wi~ NBA Tickets - The Offici. % o
&~ c |5 cloud.appcelerator.com/RwjYjBGtAkDUNGUZPnAHIBmO3IjKH4Xt/users r‘j e K@ =
(I Appcelerator . (& GoSquared) Deployd [] HD 25 Originals - 5 A Building Native Mok] GRAILS [] node (F Main (Appcelerator » [] Other Bookmarks
? Do you want Google Chrome to save your password? | Never for this site | | Save password |
a Products Developers Enterprise Partners Customers Company Contact -

My Apps / wileyone | Dovelopmnt |

Get Support ©

@ Back to App Management GoToDocs ©
m Admin Users
Users in wileyone | Create a User |
v Users ID email username Updated At & Edit/Delete
51045756436d6921aa0a17e9 wileyonetest@clea... wileyonetest@clea... 2013-01-26T22:23:18+0000
Total 1 result was found. Perpage:| 10 +

FIGURE 2-9: The All Users tab displaying the newly created user.

8. You can view the user’s information by clicking the “expand icon,” which looks like a
plus sign, on the right side of the row of content. This will expand to show the fields
associated with the user you just created. Figure 2-10 shows the expanded page.

The console supports additional features such as deleting objects, exporting objects, and set-
ting filters on the object display page. These features are just a few of the many features pro-
vided by the console. It is a great place to verify information when your application is not
doing what you expect or to pre-populate some content to get the development process
started.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 INTRODUCING APPCELERATOR CLOUD SERVICES

0606 % Clearly Innovative » Bloo % | /A Appeelerator Cloud Serv % | [jgStubHub Go Together x| [l Tickets | Washington Wi~ % NBA Tickets - The Offici. % j
& o | cloud.appcelerator.com/RwjYjBGtAkDUNGUZPnAHJBmO3IjKH4AXt/ users rj K@
Appcelerator . (& GoSquared € Deployd [E] HD 25 Originals - 5 A Building Native Mot] CRAILS [node Main (Appcelerator) » (] Other Bookmark
T Do you want Google Chrome to save your password? | Never for this site | | Save password |
a Products Developers Enterprise Partners Customers Company Contact m

My Apps / wileyone | Development |

Get Support ©
@ Back to App Management GoToDoos ©
m Admin Users
Users in wileyone Create a User
v Users ID email usemame Updated At @ E Collapse details
5104575643606921aa0a17e9 wileyonetest@clea... wileyonetest@clea... 2013-01-26T22:23:18+0000
id 5104575643606921aa0a17e9
created_at 2013-01-26T22:23:18+0000
updated_at 2013-01-26T22:23:18+0000
confirmed_at 2013-01-26T22:23:18+0000
username wileyonetest@clearlyinnovative.com
email wileyonetest@clearlyinnovative.com
admin false
SED Photos Total Gount 0
Storage Used 0
Total 1 result was found. Perpage:| 10 +

FIGURE 2-10: The All Users tab expanded to show the newly created user’s field.

Using Appcelerator Cloud Services REST API

The Appcelerator Cloud Service has a REST API that allows you to create applications utiliz-
ing the framework as long as you have network capabilities. This means that Appcelerator
Titanium apps and HTMLS applications utilizing AJAX clients both work.

www.it-ebooks.info

25

http://www.it-ebooks.info/

26

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Note the following from the Appcelerator Cloud Services documentation:

ACS is open to all app publishers, regardless of the development technology used to build the app-
Titanium, Objective-C, Java, or HTMLS5 via frameworks like Sencha Touch or PhoneGap.
Appcelerator Cloud Services provide a complete REST API along with iOS, Android, JavaScript,
and ActionScript SDKs. Any device that can make HTTP requests over the Internet can securely
use ACS as its server backend.

Because the purpose of the book is to demonstrate how to integrate Appcelerator Cloud
Services with Appcelerator Titanium Alloy through a mobile application, it contains only a
brief overview of the REST API. Additional information is available in the developer’s section
of the Appcelerator website.

Installing curl on a Device

Although you can use the Appcelerator Cloud Services console in most cases, you might some-
times need quick access to content or want to quickly verify an API call. You can use the Mac
OS terminal and the built-in curl command to access your Appcelerator Cloud Services con-
tent. On Windows machines, you can download the curl utility from http://curl .haxx.
se/download.html. To access the content, you need the application key that was created in
the previous section. The application key parameter is required on all REST API calls.

Simple Test with the REST API

Two important points to note when using the REST API and the console:

m You must always be logged in to access Appcelerator Cloud Services.

m You must save the session_id from the logged-in user to make Appcelerator Cloud
Services REST API calls.

If you log in to the Appcelerator developer site and take a look at the documentation for the
REST API, you can see examples of how to use the API. You can also see the appropriate
parameters for making the REST API call. The information regarding the URL format and the
parameters are specified in the documentation. Figure 2-11 shows an example API reference
documentation.

www.it-ebooks.info

http://curl.haxx.se/download.html
http://curl.haxx.se/download.html
http://www.it-ebooks.info/

CHAPTER 2 INTRODUCING APPCELERATOR CLOUD SERVICES 27

&« C' | [cloud.appcelerator.com/docs/api/v1/users/show r d = KE =
(] Appcelerator (= GoSquared €3 Deployd HD 25 Originals - 5° A Building Native Mob [.] GRAILS [.] node » [] Other Bookmarks
a Products Developers Enterprise Partners Customers Company Contact u

Getting Started API Reference SDKs Node.ACS
Users

Users: Show User Profile

Show User Profile Summary

Shows public user information. For private information about the currently logged in user, see Show Logged In User
Info.

URL: GET https://api.cloud.appcelerator.com/vl/users/show.json

Required Parameters:

Name Summary
user_id or A single user_id or a comma separated list of user ids
user_ids

Access Control List .
Optional Parameters:

Chats Name Summary
Checkins response_json_depth MNested object depth level counts in response json.
In order to reduce server AP| calls from an applicaton, the response json may
Clients include not just the objects that are being queried/searched, but also with some
important data related to the returning objects such as object's owner or
Custom Objects referencing objects.
Default is 3, valid range is 1o 8.
Emails

User Login Required: No

FIGURE 2-11: Sample of the Appcelerator Cloud Services API reference documentation.

You should now log in as the user you created in the previous section. The cookies. txt file
will save the session information for use in other API calls. Type the information into the
terminal, replacing the key parameter with your app ID.

$ curl -b cookies.txt -c cookies.txt -F
"login=wileyonetest@clearlyinnovative.com" -F
"password=wileyonetest"

https://api.cloud.appcelerator.com/vl/users/login. json?key
= [your-app-id]

The response should look something like the following code snippet, which indicates that
you have successfully logged in to Appcelerator Cloud Services and the session information
has been saved in the cookies.txt file. Please also note that all Appcelerator Cloud
Services responses are in the JSON format. The meta section that follows always includes
information about the specific query as well as a response section that lists the informa-
tion on the objects that are returned from a successful request.

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

{
"meta": {
"code": 200,
"status": "ok",
"method name": "loginUser",
"session id": "Pn5a6zl9prBWTiu2tI MONtg7-M"
b
"response": {
"users": [
{
"id": "51045756436d6921aalal7e9",
"created at": "2013-01-26T22:23:18+0000",
"updated at": "2013-01-27T21:47:21+0000",
"external accounts": [
1,
"confirmed at": "2013-01-26T22:23:18+0000",
"username": "wileyonetest@clearlyinnovative.com",
"email": "wileyonetest@clearlyinnovative.com",
"admin": "false",
"stats": {

"photos": {
"total count": 0
b
"storage":
"used": 0

Now you'll use the Appcelerator Cloud Services REST API to update the user object you cre-
ated. If you recall, the user object hasa first name and a last_name field, which you did
not set when the object was created. You can set those object properties on the command
line using curl:

$ curl --verbose -b cookies.txt -c cookies.txt -X PUT --data-
urlencode "first name=Aaron" --data-urlencode "last name=Saunders"
"https://api.cloud.appcelerator.com/vl/users/
update.json? key=[your-app-id]"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 INTRODUCING APPCELERATOR CLOUD SERVICES

You can get the value for your-app-id from the Appcelerator Cloud Services console on
the Appcelerator website. After you log in to my.appcelerator.com/apps, select the
appropriate application, and click Manage ACS. The new window will display a field titled
“App Key,” which is the value to use for your-app-id.

The result shows the updated user object:

"meta": {
"code": 200,
"status": "ok",
"method name": "updateUser",
"session id": "Pn5a6zl9prBWTiu2tI MONtg7-M"
"response": {
"users": [
"id": "51045756436d6921aalal7e9",
"first name": "Aaron",
"last name": "Saunders",
"created at": "2013-01-26T22:23:18+0000",
"updated at": "2013-01-27T21:59:00+0000",
"external accounts": [
]!
"confirmed at": "2013-01-26T22:23:18+0000",
"username": "wileyonetest@clearlyinnovative.com",
"email": "wileyonetest@clearlyinnovative.com",
"admin": "false",
"stats": {
"photos": {
"total count": 0
"storage": {
"used": 0
1

www.it-ebooks.info

http://my.appcelerator.com/apps
http://www.it-ebooks.info/

30

BUILDING CROSS-PLATFORM APPS USING TITANIUM

The same REST API used from the command line can be integrated into your Appcelerator
Titanium mobile application, and in most cases the integration is done for you. For those
who are interested, this section presents the same function performed previously using the
REST API incorporated in a Titanium mobile application.

To connect to the service, you use the Appcelerator Titanium framework’s http client class,
as well as the same appkey and API URL that you used on the command line.

This sample contains some advanced topics. Information about the Ti.Network.
HTTPClient can be found in the Appcelerator Titanium documentation at http://docs.
appcelerator.com/titanium/latest/#!/api/Titanium.Network.HTTPClient

var url = "https://api.cloud.appcelerator.com
/vl/users/login.json?key=[your-app-id]l";
var client = Ti.Network.createHTTPClient({
// called when the response data is available
onload : function(e) {
var results = JSON.parse (client.responseText) ;

// display results on console

Ti.API.info (JSON.stringify (results,null,2));
// called when an error occurs, including a timeout
onerror : function(e) {

var results = JSON.parse(client.responseText) ;

// display error results on the console
Ti.API.err (JSON.stringify(results,null,2));
b
I3
// Prepare the connection
client.open ("POST", url);

// Send the request with parameters
client.send ({
login :"wileyonetest@clearlyinnovative.com",
password : "wileyonetest"

)

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Network.HTTPClient
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Network.HTTPClient
http://www.it-ebooks.info/

CHAPTER 2 INTRODUCING APPCELERATOR CLOUD SERVICES 31

When you run this code, you will see the same results as when the REST API call was exe-
cuted from the command line using curl. The function’s parameters are provided as a
parameter to the httpClient’s send method.

The previous section described how to use Appcelerator Cloud Services from the console,
from the terminal using curl and using the HTTP client to make requests. The next section
demonstrates the preferred integration method, which is to use the Cloud Services library
and application properties provided by Appcelerator.

Integrating Appcelerator Cloud Services

Appcelerator Cloud Services are tightly integrated with the Appcelerator Framework.
Integrating the functionality is as simple as setting an option when creating an application.
This section shows you how to include Appcelerator Cloud Services in your application using
the Appcelerator Titanium Studio project creation wizards.

Launch Appcelerator Titanium Studio and choose File © New = Titanium Project, as shown
in Figure 2-12.

® Titanium Studio |7 Edit

Navigate Search Project Run Commands Window Help

7% Titanium Project
fa} Titanium Module Project =
% Project... =

New From Template >

&1 Open URL...
New Open Save Print. Ung Qpen File...

Close BW i
Close All osw L Folder
Pl s = Untitled Text File
Save %S
Save As... [Other... BN =
Save All +38S
Revert

Norma Palatino | EiFile

Move...
Rename...

Refresh 5
Convert Line Delimiters To >

Print... 8P

Switch Workspace >
Restart

g Import...
e Export...

Properties |

1 Web Browser [http:/...]

2 backbone.js [TableViewRowExample/...]
3 restapi.js [TableViewRowExample/...]

4 Stock.js [TableViewRowExample/...]

Preparing|
Developm|

FIGURE 2-12: Creating a new Titanium project.

www.it-ebooks.info

http://www.it-ebooks.info/

32 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Enter the information for the project you are creating. This example names the project
wileyTwoSample and the app.id com.ci.wileytwosample, as shown in Figure 2-13.

Note two important points here:

m The app ID must be unique; this is a requirement from iOS and Android SDKs.

m The app ID is usually structured in the reverse domain name format.

8000 New Titanium Project

New Titanium Project
Create a new Titanium Project i

, Project Location

Project name: wileytwosample
E Use default location

Location: /Users/aaronksaunders/Documents/workspace/alloy/wileytwosam Browse...

Project Settings

App Id: com.ci.wileytwosample
Company/Personal URL: [hnp:j,.fwmlc[earlyinnovatlve.corri]
Titanium SDK Version: | 3.0.0.CA :]

Deployment Targets: ¥ ipad @ iPhone (¥ Android | | BlackBerry (¥ Mobile Web
Set-up/Configure SDKs

Cloud Settings

Titanium Mobile provides services to cloud-enable this application. This provides a wide array
of network features and data objects for your app. Learn more

@ Automatically cloud-enable this application

@ [<Back Next > [cancel | [Finish)

FIGURE 2-13: The new project with its completed fields.

Note the Cloud Settings section at the bottom of Figure 2-13. This is checked by default on all
projects created in Titanium Studio. It cloud-enables your application by including the ti.
cloud.js module in your application and setting the default authentication keys in the
tiapp.xml file. These authentication properties are read by the ti.cloud.js module so as
to provide access to your Appcelerator Cloud Service content. (When you cloud-enable your

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 INTRODUCING APPCELERATOR CLOUD SERVICES

application it means that the connection to Appcelerator Cloud Services has been configured
for you and the application has been set up in the Appcelerator Cloud Services console for you.)

After the project is created, you will be presented with the application configuration screen,
which is a clean Ul representing the XML inside of tiapp.xml. You can see the inclusion of
the ti.cloud module and the Cloud Services API keys. Figure 2-14 shows the tiapp .xml
user interface screen.

index.js stocks.js W | stocks.xml] Stock.js | alloy @ Dashboard] app.js > =a
= = [

B8 'Wileytwosample' Configurations

Application Modules

[Module ® El
@ ti.cloud * *

Application Id: | com.ci.wileytwosample I

*
)
[+]

Version: Lo

Publisher: aarenksaunders

Publisher URL: | http:/ /www.clearlyinnovative.com

lcon: appicon.png Browse... | ©

Copyright 2013 by aaronksaunders

not specified

Description:

Build Properties

Titanium SDK: | 3.0.0.CA x|

The latest detected version will be used

Android Runtime: | V8 @
N Cloud Services e

DepoymenyTargsts Production Key: HzglgNioTnxobLpX0iStLmUg IMSF2hNZ
@ iPad Development Key: iwW4x]N70B96gRgAnplh2zYvMMOa24js

@ iPhone

& Android
BlackBerry (3)

& Mobile web

configure...

Overview | tiapp.xml |

FIGURE 2-14: The tiapp.xml user interface screen.

If you view the raw XML in the tiapp . xml file, you can see the Appcelerator Cloud Services
keys that were added to the application:

<property name="acs-oauth-secret-production"
type="string">jm9LjW6cNiDOJLD5pCIW8RWgluxM5FYB</property>
<property name="acs-oauth-key-production"
type="string">80H9F4B0Dm7104FEjmV1CNbjrGzUcLeQ</property>
<property name="acs-api-key-production"
type="string">HzglgNio7nxobLpX0i9tLmUglMSF2hN2</property>
<property name="acs-oauth-secret-development"
type="string">nRAB8IJR5zWSgPq73HYLNnYGTTFWCAXEf</property>

www.it-ebooks.info

33

http://www.it-ebooks.info/

34

NOTE

BUILDING CROSS-PLATFORM APPS USING TITANIUM

<property name="acs-oauth-key-development"
type="string">ex]jDF3XgNFvhHSV4rGLhkHgkdglyDVc3</property>

<property name="acs-api-key-development"
type="string">iwW4xJN70B96gRgAnpIh2zYvMMOa24jS</property>

At the bottom of the file you can see the inclusion of the ti.cloud JavaScript module:

<modules>
<module platform="commonjs">ti.cloud</module>
</modules>

The ti.cloud JavaScript module supports most of the features of the Appcelerator Cloud
Services API; please note that in some cases features will be available in the REST API before
they are included in an updated ti.cloud. js JavaScript module.

From the Appcelerator documentation regarding Appcelerator Cloud Services support in the
JavaScript module: Note that when new APls are added to ACS, they may not be immediately
available in the Titanium.Cloud module. The version listed after some APIs indicates the
Titanium Mobile SDK release that included support for that API. (Note that the Titanium.
Cloud module version is not always the same as the SDK version that it ships with.)

The Titanium. Cloud module also includes a sample application demonstrating each of the
ACS request types. You can find this in the modules folder under the Titanium SDK folder.
For example:

/Library/Application Support/Titanium/modules/commonjs/
ti.cloud/<versions>/example

Simple Example of Integrating

Appcelerator Cloud Services

To help you get comfortable with Appcelerator Cloud Service, this section starts with a
simple example that modifies the project you created previously. It doesn’t go into too much
detail about the Alloy application structure, because the purpose here is simply to demon-
strate the Appcelerator Cloud Service integration.

Alloy applications have models, views, and controllers. In this application you are going to add

some code to create a user object. Business logic will be included in the controllers, so you
need to modify the default index. js controller with the Appcelerator Cloud Services code.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 INTRODUCING APPCELERATOR CLOUD SERVICES

Model-view-controller (MVC) is a software pattern for implementing user interfaces. It's m

described in more detail in Chapter 3.

Open the project you created previously and select the index. js file. Figure 2-15 shows
Titanium Studio with Alloy, opened to the index. js file.

006 Studio - wileytwosample/app/controllers/index.js - Titanium Studio - /Users/aaronksaunders/Documents/workspace/alloy s

ms a0 = AERECEQG-] SEE|H-F e - [%5 Debug |fa Studio
2+ App Explorer | [T Project Explorer 53 = 0 L indexjs & stocks.xml 1L stock.js | allay @ Dashboard _Lindexjs &2 712 = |
wileytwosample oo ‘ =& %y Q- ¥ i Function

e {
alert($.label.text);

& app
s assets
& controllers
W index.js
s models
& styles
B views
Walloy.js
M config. json
ESREADME
s modules
& plugins
5 Resources
B CHANGELOG . £xt
B8 LICENSE

$.index.open();

B8 LICENSE. £xt
B manifest

B README

28 tiapp.xml

E% outline 22 1%, ¥ = 0 B cons.. % |[E dial.. |4 Search | titan... B Tod... B orca... |[B word... [E Tabl... |[H wiley...| = B

wye filter text <terminated> Titanium iPhone Simulator - wileytwosample [Titanium OS Simulator] i0S build and deploy
€ doc BBl ElE| - 8- 5B~
@ doClick(e) ® 9‘#| u b |E| B-r3

FIGURE 2-15: Titanium Studio with Alloy, opened to the index.js file.

The first step is to include the Appcelerator Cloud Services module in the application, as so:

var Cloud = require('ti.cloud');

Next you need to add some code to create a new user in Appcelerator Cloud Services. This
will be the first user associated with this application since you are using the new Appcelerator
Cloud Services application content created when you created the project.

Go to the Appcelerator Developer Center on the website to find the Appcelerator documenta-
tion. Because Appcelerator Cloud Services are integrated into the platform, you can access
the documentation with the rest of the Appcelerator Titanium API calls at http://docs.
appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.

www.it-ebooks.info

35

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud
http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Figure 2-16 shows the Appcelerator developer documentation on Cloud Services.

« C [docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud el @ =
(] Appeelerator (= Gosquared €) Deployd [£] HD 25 Originals - 5 A Building Native Mot [GRAILS [node f Main (Appeelerator) [what » (L] Other Bookmarks
Aappceleratur” Titanium 3.0 ~
TableViews it © | @ Window
& Global
Alloy =
¥ Titanium
A Accelerometer Show~ =
A Analytics
A Android
A APT Titanium.Proxy > Titanium.Module > Titanium.Cloud Android 2.0
npp
Cloud i D_
The top level Cloud module. iPhone 2.0
A ACLs
Chats Appeelerator Cloud Services (ACS) provides a wide array of automatically-scaled data storage and web services, such iPad 2.0 y
#* Checkins as user logins, photo uploads, checkins, status updates, and push notifications, without the need to leam multiple third-
#¥ Clients party SDKs or do any server-side programming. Remote calls to ACS are done via a single REST API, which may be
" Emails used with almest any web technology that has access to an HTTP client.
5 Events
e Titanium Loud module makes accessin as simple as using any of Titanium's other s, due to its familiar and intuitive schema.
¥ Files The Ti c dule mak ing ACS pl ing any of Titanium's other APIs, due to its familiar and intuitive APl sch
¥ Friends For a more detailed overview of ACS and how to configure an application to use it, refer to the Integrating with Appcelerator Cloud Services and ACS
#* KeyValues Quickstart guides
¥ Messages
 Objects Beta ACS APIs
¥ PhotoCollections Be aware that ACS APIs that are in pre-release form (marked "Beta" in the ACS documentation) may be subject to change. During this pericd, while
¥ Photos they are not supported directly by the Titanium. Cloud module, they may be accessed using the REST APL
A Places Using the Titanium.Cloud Module
is module is not included in the Titanium namespace, but it is bundled with the Titanium SDK as an optional CommenJS module. To use it, impo
dul t included in the Tit but it is bundled with the Tit SDK tional C WS module. T it t
#¥ PushNotifications. the module using require:
5 Reviews
#* Sociallntegrations var Cloud = require(‘ti.cloud');
Statuses
Users i
Authentication
#* CloudPush Your app must prove that it is allowed to talk to ACS. This keeps your data secure by preventing anyone from making requests to ACS that
impersonate your app. rovides several means of authentication:
#* Codec p te your app. ACS provid | f authenticati
Contacts
 Database o 3-Legged OAUth. With 3-legged OAuth, the user and application are authenticated at the same time. User login (or signup) is done using a separate
Facebook authentication server, which returns a time-limited access token to the application. The application uses the access token to authenticate all
 Filesystem subsequent requests.
 Geolocation + 2-Legged OAuth. This is a process by which a key and secret are used to sign each request made by your app. When the ACS server receives your
2 Gesture request, the secret is used along with the data sent in the request to calculate another signature. If sent signature and calculated signature match,
 Locale the request will be processed
; Map ¢ APl Key. In this method, the application passes a pre-provisioned API key with each request.
Media When using 2-Legged OAuth or API key authentication, the application presents its own Ul to prompt the user for usemame and password. Then the
Module application calls login or create method to authenticate the user, passing in the usemame and password. Once logged in, the application can store the:
#* Network sessionid retumed by ACS in secure Storage in order to persist the session when the application restarts
A Platform
2 stream When using 3-Legged OAuth, the module presents an authentication dialog to the user when secureLogin or secureCreate method is called. The user's
o login and password are not available to the application. The application can store the accessToken retumed by the authentication server in secure
sl storage So that it doss not need to present the login dialog each time the application restarts. Unlike session IDs, however, access tokens expire after
s
o a period of time. The application owner can configure the expiration time through the ACS website.
#* Yahoo The Ti.Cloud medule does not provide a mechanism for securely storing a sessionId or accessToken; the application must provide storage that
By Inheritance matches its security requirements.

FIGURE 2-16: Appcelerator developer documentation on Cloud Services.

Notice the complete list of Cloud Services objects listed in the left panel. Select the Users
object for information about creating a new user with the Appcelerator Cloud Services API.

Click on the Users object and copy the sample code for creating a user. Paste the code into
your index. js file and then save the file.

The index. js file is the first controller file executed in the Titanium Alloy application. By
inserting the code here, you have a test harness so you can quickly demonstrate the interac-
tion of the mobile application with the Appcelerator Cloud Services. Note that this is not the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 INTRODUCING APPCELERATOR CLOUD SERVICES

recommended approach for implementing Cloud Service integration since it does not follow
the MVC pattern.

Cloud.Users.create ({
email: 'test@mycompany.com',
username: 'test@mycompany.com',
first name: 'test firstname',
last name: 'test lastname',
password: 'test password',
password confirmation: 'test password!'
}, function (e) {
if (e.success) {
var user = e.users[0];
alert ('Success:\\n' +

'id: ' + user.id + '"\\n' +
'first name: ' + user.first name + '\\n' +
'last name: ' + user.last name);
} else {
alert ('Error:\\n' +
((e.error && e.message) || JSON.stringify(e)));

3N

The Cloud.Users.create method takes a dictionary of parameters and a callback for
when the function has completed. This example doesn’t set all of the function’s parameters.
If you are interested in the complete set of parameters, you can review all of the optional and
required parameters in the Appcelerator Cloud Services documentation at http: //cloud.
appcelerator.com/docs.

The function parameter information is not included in the Appcelerator Titanium Framework
documentation; you must view the information at the Appcelerator Cloud Services
documentation link (see http://cloud.appcelerator.com/docs).

The parameters for the Cloud.Users. create method are shown in bold:

Cloud.Users.create ({
email: 'test@mycompany.com',
first name: 'test firstname',
last name: 'test lastname',
password: 'test password',
password confirmation: 'test password!'

www.it-ebooks.info

37

http://cloud.appcelerator.com/docs
http://cloud.appcelerator.com/docs
http://cloud.appcelerator.com/docs
http://www.it-ebooks.info/

38

BUILDING CROSS-PLATFORM APPS USING TITANIUM

}, function (e) {
if (e.success) {
// success
} else {
// error

3K

And the callback is shown in bold here:

Cloud.Users.create ({
email: 'test@mycompany.com',
first_name: 'test_firstname',
last_name: 'test_lastname',
password: 'test password',
password_confirmation: 'test_password'
}, function (e) {
if (e.success) {
// success
} else {
// error!!

K

In the previous example, you used an anonymous function as the callback and specified the
parameters inline as a JavaScript object. You could have created a separate function and
structured the code like this:

/**
* callback function for Cloud.Users.create
* @param {Object} e
*/
function createCallbackFunction(e) {
if (e.success) {
// success
} else {
// error

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 INTRODUCING APPCELERATOR CLOUD SERVICES

// Trying to create a user
Cloud.Users.create ({

email : 'test@mycompany.com',

username : 'test@mycompany.com',

first name : 'test firstname',

last name : 'test lastname',

password : 'test password',
password_confirmation : 'test_password'

}, createCallbackFunction) ;

When the code is executed, it makes an asynchronous request to the server; the callback
function is executed when the request completes. The results of the request are returned in a

response object similar to the following output:

{
"meta": {
"code": 200,
"status": "ok",
"method name": "createUser",
"session id": "Pn5a6zl9prBWTiu2tI MONtg7-M"
b
"response": {
"users": [
{
"id": "51045756436d6921aalal7e9",
"email": 'test@mycompany.com',
"first name": 'test firstname',
"last name": 'test lastname',
"created at": "2013-01-26T22:23:18+0000",
"updated at": "2013-01-27T21:59:00+0000",
"external accounts": [
1.
"confirmed at": "2013-01-26T22:23:18+0000",
"username": 'test@mycompany.com',
"email": 'test@mycompany.com',
"admin": "false",
"stats": {
"photos": {
"total count": 0
b
"storage": {

"used": 0

www.it-ebooks.info

39

http://www.it-ebooks.info/

40

BUILDING CROSS-PLATFORM APPS USING TITANIUM

The object is specific to the Cloud Services object that the function is acting upon, which in
this case is Cloud.Users. There is some commonality in the properties of the response
object; where they vary is with the array of objects returned. So in the case of the Cloud.
Users, user objects are returned. With Cloud. Places, a place object would be returned.

Now that you have seen the changes made to the application in the index.js file, try to
launch the application and see what happens. Figure 2-17 shows the process of launching
the application.

Studio - wileytwosample/app/controllers/index.js - Titanium Studio - /Users/aaronksaunders/Documents/workspace/alloy]
& v Qv G ‘ ¥« | ABEE = B Q- 3RS TR [%5-Debug g Studio
%5 App Explorer | [Praject Explorer 53 = 8| L indexjs L. stocks.js] stocks.xml 1L stockjs | alloy W Dashboard L indexjs 52| ™11 =8

wileytwosample & | 2% -0~ function
& app > Android Emulator
B-assets % iPad Simulator
& iPhone Simulator
(B Mobile Web Preview in Browser
(= Mobile Web Preview in Emulator

Ce) {
. label. text);

[Android Device
[i0S Device

% Titanium iPhone Simulator - wileytwosample
#s-plugins
#5-Resources
B CHANGELOG . xt .
BB LICENSE 7 if (e.success) {
BS LICENSE. txt var user = e usersl; 1H
B manifest 'd* .

0 r.id +
README

B ' " + user.first_name +
' + user.last_name);

Run Configurations...

28 tiapp.xml

n' +
(Ce.error &% e.message) || JSON.stringify(e)));

& console 3 | Bl ci_allo... | 4 Search | (Bl titaniu... [N TodoLi... | Bl orcasfi... | (B wordpr... | [EN Tablev... | [N wileyt...
Titanium iPhone Simulator - wileytwosample [Titanium 105 Simulator] i0S build and deploy

B IETE

8% outline 52 i n 9s 536ms

FIGURE 2-17: Launching the application.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 INTRODUCING APPCELERATOR CLOUD SERVICES

Figure 2-18 shows the result of running the application.

a 3

Alert
Succe:
5105db3e15e0
name: test_firstname'n
test_lastname

y

FIGURE 2-18: The result of running the application.

Finally, Figure 2-19 shows the application results in the Appcelerator Cloud Services
console.

www.it-ebooks.info

http://www.it-ebooks.info/

42

BUILDING CROSS-PLATFORM APPS USING TITANIUM

© 0 O | A quickstart x | A Your Applic | /A Appeelerat x | A Titanium.C x | A Your Applic x | A Appcelerar x | []bulkload = x | Miinbox (10.¢ % |) namespace x S
€« C @ https://cloud.appcelerator.com /4cca01b2-cc80-4a19-bSd0-c2761b598a86/users 2l E =
(i Appcelerator (S Gosauared (@) Deployd [HD 25 Originals - Sc A Building Native Mob. (i GRAILS (il node ' Main (Appeelerator what » (] Other Bookmarks
Products Developers Enterprise Partners Customers Company Contact
My Apps / 9780470487352 fg0111-development ==
Get Support ©
@ Back to App Management Go ToDoos ©
[T Aominusers
Users in 9780470487352 fg0111-development Greate a User
v Users ID email usemame Updated At © Edit/Delete
51050036 15606076130c2543 m com 2013-01-28T01:56:22+0000
id 51050b3e1506076/90c2549 EITgelinnirey
first_name test firstname
last_name test_lastname
created_at 2013-01-28T01:56:22+0000
updated_at 2013-01-28T01:58:22+0000
confirmed_at 2013-01-28T01:56:22+0000
usemame test@mycompany.com
email test@mycompany.com
admin faise
stats Photos Total Count 0
Storage Used 0
Total 1 result was found. Perpage:| 10 :

Aappceleramr' vy f P 3 m

help & support privacy policy legal information

FIGURE 2-19: The application results in the Appcelerator Cloud Services console.

Summary

In this chapter you successfully created and cloud-enabled the mobile application with a scal-
able infrastructure supported by Appcelerator. You interacted with the cloud services using
curl, using the Appcelerator Network Ht tpClient, and finally using the preferred method
with the Cloud module library.

The next chapter starts to get into more detail of the Appcelerator Titanium Alloy frame-

work; combining the structure of the framework with the full-featured cloud services pro-
vides you with a powerful technology stack for creating mobile solutions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

Appcelerator Titanium
Alloy Overview

ALLOY IS A new application framework by Appcelerator Titanium. It provides an MVC—
Model-View-Controller—framework for developers to build cross-platform mobile applica-
tions. You are not required to use Alloy when building apps with Appcelerator Titanium, but
after you understand the benefits of the framework, you will want to. Also note that even
with Alloy, you can still fall back to the more traditional application structure in situations
when you believe the Alloy approach doesn't fit.

Alloy provides a clean, well-defined MVC structure for building your applications. This struc-
ture follows the convention over configuration approach, which means if you structure and
build your app following a specified set of conventions, the framework is self-configuring.

The Model-View-Controller (MVC) triad of classes (first described by Krasner and Pope in 1988)
is used to build user interfaces in Smalltalk-80. Looking at the design patterns inside MVC
should help you see what the term “pattern” means. MVC consists of three kinds of objects.
The Model is the application object, the View is its screen presentation, and the Controller
defines the way the user interface reacts to user input. Before MVC, user interface designs
tended to lump these objects together. MVC decouples them to increase flexibility and reuse.

From an Appcelerator Titanium perspective, MVC means you now have a well-defined
structure for your applications based on a proven framework that is utilized in many pro-
gramming languages today.

www.it-ebooks.info

http://www.it-ebooks.info/

11

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Understanding the Model-View-Controller (MVC)

Framework

The model in MVC stores and maintains the data that your application works with. This can
be local data stored in a SQLite database or a flat file but the same model maintains the data,
whether it comes from a remote web service, a REST-based API, or a document store like
MongoDB or Couchbase. The key here is that if the code/function has to do with managing
or manipulating data—the CRUD—then it most likely belongs in the model.

CRUD refers to the major functions that are implemented in relational database applica-
tions. Each letter stands for a standard SQL statement and HTTP method:

m Create or add new entries

m Read, retrieve, search, or view existing entries
m Update or edit existing entries

m Delete/deactivate existing entries

The following code snippet represents the simplest form of a model that you would use in
your mobile solution.

exports.definition = {
config : {
// table schema and adapter information

b

extendModel: function (Model) {
_.extend (Model.prototype, {
// Extend, override or implement Backbone.Model

I3F;

return Model;

b

extendCollection: function(Collection) {
_.extend(Collection.prototype, {
// Extend, override or implement Backbone.Collection

I3F;

return Collection;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

You'll learn about more of the advanced aspects of the model when you read about sync
adapters and data binding later in the chapter.

The view is pretty straight forward, and usually the easiest to understand. It is the presentation
layer of the application. All things that the user will interact with directly are considered the
view. The view.xml files are XML-based representations of the user interface built using the
Appcelerator objects defined in the various Titanium namespaces. The following code shows a
sample view file of a window containing a label. The label has a click event associated with it.
When the label is clicked, the function doC1ick from the associated controller is executed.

Notice the id property on the view elements. It allows you to access the object from inside
the controller.

You'll read more about views later in this chapter when you start to integrate all of the pieces
of the framework together and build a functional application.

The following code snippet represents the simplest form of a view that you could use in your
mobile solution.

<!-- Create a window object and add a label to it -->
<Alloy>
<Window id="main window" class="container"s>
<!-- on click event, call controller function doClick -->
<Label id="hello label" onClick="doClick"s>
Hello, World
</Label>
</Window>
</Alloy>

Another important capability of Alloy when creating views is the use of the Require XML
tag. It allows you to include other views or widgets in a view.

You can expand the previous example by adding a header to the window containing a title.
Create the new view using the command line or by the menu item:

alloy generate controller header

Then add a simple label with a title inside the header . xm1 view file.

<Alloy>
<View class="container"s
<Label>My Sample Title</Labels>
</Views
</Alloy>

www.it-ebooks.info

45

http://www.it-ebooks.info/

46

BUILDING CROSS-PLATFORM APPS USING TITANIUM

You can set the style on the new header file to make sure the header is at the top of the page
and the label font is larger and bold. Add the following code in to the header . tss file:

The following code snippet represents an example of a . tss file that would hold the style
information for a view in your mobile solution. Alloy uses the concept of convention over
configuration, which in this case means the components are matched by their names—
header . js for controller, header. tss for styles, and header . xm1 for view.

".container": {
backgroundColor: "white",
top : O,
height : Ti.UI.SIZE,
width : Ti.UI.FILL,

backgroundColor : "brown"
I
"Label": {
font :
fontSize : 18,
fontWeight : 'bold'
}
}

Finally, when you put it all together, the updated index.xml view file looks like this:

<!-- Create a window object, add header then add a label to it -->
<Alloy>
<Window id="main window" class="container"s
<!-- header for window, using Require -->
<Require type="view" id="header" src="header" />

<!-- on click event, call controller function doClick -->
<Label id="hello label" onClick="doClick"s>
Hello, World
</Label>
</Windows>
</Alloy>

The controller is the heart of the business logic for your application; it is the glue that holds it
all together. Going in one direction, the controller gets data from the model for the view to
render. Going in the other direction, the user interacts with the view, which then triggers the
controller to take a specific action with the view or to pass CRUD changes on to the model.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

In the following sample controller file, you can see the doClick function mentioned previ-
ously. Note how the controller has access to the controls from the view by using the $ variable
to access context variables like the hello label and the main window being used in the
open statement at the end of the file.

// local/private function
function doClick(e)
alert ($.hello label.text) ;

// public exported function than can be accessed by other
// controllers
exports.changelLabelText = function(text) {

$.hello label.setText (_text);

// $ Represents current scope of controller, open the window
// main window that was defined in the view.xml
$.main window.open() ;

Most applications will have multiple models, controllers, and views but this structure will
help in architecting and maintaining your application.

Using Appcelerator Alloy with
the MVC Framework

Appcelerator Alloy maps the MVC framework directly to its project file structure. As you can
see in Figure 3-1, there is a folder corresponding directly to the components described in the
description of MVC.

Alloy also includes an additional file type to further complement the framework, . tss files,
which contain style information that is applied to views. This further separates the concerns—
how you apply styles to the view is controlled through .tss files, which are structured very
similar to cascading style sheet (. css) files you would find in an HTML website. These . tss
files are then applied to the view at pre-compile time to determine layout color and
presentation-related properties.

www.it-ebooks.info

47

http://www.it-ebooks.info/

48

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Name

¥ M app

[alloy.js
» [assets

|#| config.json

4 Date Modified

Feb 19, 2013 3:09 PM
Feb €, 2013 10:48 AM
Feb 6, 2013 10:49 AM
Feb 19, 2013 1:37 PM

> [controllers Feb 6, 2013 10:48 AM
» @ lib Feb 6, 2013 10:49 AM
» ([models Feb 6, 2013 10:54 AM
] README Feb 6, 2013 10:48 AM
> @ styles Today 7:48 PM
> [views Today 7:48 PM
¥ [widgets Feb 19, 2013 3:09 PM
v B buttonToggle Feb 19, 2013 3:09 PM
¥ [assets Feb 19, 2013 1:37 PM
¥ [controllers Feb 19, 2013 1:37 PM
Fﬂ widget.js Today 5:56 PM
¥ (0 styles Feb 19, 2013 1:37 PM
| widget.tss Feb 19, 2013 5:31 PM
v [views Feb 19, 2013 1:37 PM
1 widget.xml Feb 19, 2013 1:59 PM
|# widget.json Feb 19, 2013 1:37 PM
» 3 build Today 6:29 PM
7 CHANGELOG.txt Feb 6, 2013 10:48 AM
| LICENSE Feb €, 2013 10:48 AM
_" LICENSE.txt Feb 6, 2013 10:48 AM
| manifest Feb €, 2013 10:48 AM
(] modules Feb 6, 2013 10:52 AM
» [plugins Feb 6, 2013 10:48 AM
| README Feb 6, 2013 10:48 AM
» [Resources Feb 8,2013 3:33 PM
] tiapp.xml Feb 19, 2013 1:48 PM

FIGURE 3-1: Appcelerator Alloy folder project structure.

Using the view file you created previously, add the following code to the file.

<!-- Create a window object and add a label to it --»>
<Alloy>
<Window id="main window" class="container"s>
<!l-- on click event, call controller function doClick -->
<Label id="hello label" onClick="doClick">
Hello, World
</Label>
<Label id="blue label" >Blue Label</Label>
</Windows>
</Alloy>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW 49

You could style the index. tss file like this:

// This is applied to any element with the class attribute
// assigned to "container"
".container": {
backgroundColor: "white",
layout:"vertical",
b
// This is applied to all Labels in the view
"Label": {
width: Ti.UI.SIZE,
height: Ti.UI.SIZE,
color: "#000" /* black */
I
// This is only applied to an element with the id attribute
// assigned to "label"
"#blue label": {
color: "blue"

In this example, the index.tss file is specific to the index.js controller, but you can
create global-level styles by using an app . tss file.

Also since Appcelerator supports cross-platform development, you can have platform-specific
styles using specific selectors in your . tss files:

// This is applied to all Labels in the view
"Label": {
width: Ti.UI.SIZE,
height: Ti.UI.SIZE,
color: "#000" /* black */
b
// This is applied to all Labels in the view, when the device
// 1s an android device
"Label [platform=android] ": {
color: "green"

b

The relationship of the .tss files to the .xml view files is similar to the HTML files and
the . css files in a web application.

www.it-ebooks.info

http://www.it-ebooks.info/

50

NOTE

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Backbone.js

Alloy includes additional JavaScript libraries to assist in structuring the MVC pattern when
developing applications; one such library is called Backbone js.

Backbone.|s gives structure to web applications by providing models with key-value binding and
custom events, providing collections with a rich APl of enumerable functions, and providing
views with declarative event handling. Backbone.js connects it all to your existing APl over
a RESTful JSON interface. See http://blog.iandavis.com/2008/12/09/what-are-
the-benefits-of-mve/.

Alloy’s implementation focuses specifically on integration of models, collections, and event
binding. The view and routing implementation of Backbone.js is not leveraged in Alloy.

Backbone.js has a dependency on underscore. js, which provides a set of utility functions
that are exposed by default on the model and collection objects. They can also be applied to your
application object. See http://underscorejs.org/ and http://backbonejs.org/.

Backbone.js in Alloy: Models and Collections

Models are a representation of the data in your mobile application. Backbone.js provides the
basic functions for maintaining the data. The model objects can be extended to provide cus-
tomized functionality to your model. Alloy models inherit the default Backbone .Model
functionality.

A collection is a set of models of a specific type. The collection is comprised of the models and
a set of functions to manage the collection/list of models. The collection objects can be
extended to provide customized functionality to your models. Alloy models inherit the
default Backbone . Collection functionality.

Models and collections are contained in one model file in Alloy; the basic file starts off

like this:

exports.definition = {
config : {
"columns" : {
name : 'TEXT',
I

www.it-ebooks.info

http://blog.iandavis.com/2008/12/09/what-are-the-benefits-of-mvc/
http://blog.iandavis.com/2008/12/09/what-are-the-benefits-of-mvc/
http://underscorejs.org/
http://backbonejs.org/
http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

// specify sync adapter information here

"adapter" : {
"type" : "sgl new",
"collection name" : "stuff",
"idAttribute" : "stuff id" // if not using id as the id

}
b

extendModel : function (Model) {
_.extend (Model.prototype, {
// add code here to extend the model

3N

// end extend model

return Model;
I
extendCollection : function(Collection) {
_.extend(Collection.prototype, {
// add code here to extend the collection
1)

// end extend collection

return Collection;

As stated, the models represent the data and the supporting methods in your mobile applica-
tion. When your model needs to be read, saved, or modified, Backbone.js has a default persis-
tence strategy that it applies which is based on the default HTTP verbs. This default strategy
assumes convention over configuration in that the models are wired to function perfectly
with a REST-based APl in response to the HTTP verbs.

The following table outlines how your application’s actions map to HT TP verbs and how that
is then represented in Backbone.js sync adapters:

Insert new book POST create
Get a specific book GET read
Get all books GET read
Update a book PUT update
Delete a book DELETE delete

www.it-ebooks.info

51

http://www.it-ebooks.info/

52

BUILDING CROSS-PLATFORM APPS USING TITANIUM

These simple code snippets reflect the previous table’s actions:

// create a new model, passing the name of model

= Alloy.createModel ("stuff") ;
model.set ({"name":"Aaron", "age":22});
model.save(); // POST: create

var model

// get a model by model id
var model = new Stuff();
model.fetch(10); // GET: read

// get a collection of models
var collection = Alloy.createCollection("stuff");
collection.fetch(); // GET: read

// update a model

var model = new Stuff () ;
model.fetch(10); // GET: read
model.set ({"age":45}) ;
model.save(); // PUT: update

// delete a model by model id
var model = new Stuff () ;
model .destroy (10); // DELETE: delete

The model file defined here will support all of the actions described in the table without any
additional changes. Sometimes you need your model or collection to support additional

functionality, which is where extending the model object comes in.

Assume you have a model object that stores dates. You know that dates are usually stored in
some format that is not easy for end users to read. You could extend the model to encapsu-
late rendering and produce prettyDate. This involves converting the timestamp into a for-

matted date string.

extendModel : function (Model) {
__.extend (Model.prototype, {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

// @return a pretty version of the date using
// moment.js date utilities
// @see http://momentjs.com/
//
prettyDate : function()
var _model = this;
var date update = model.get ("date update") ;
return moment.unix(date_update) .calendar () ;

3N

// end extend model

You can then just call the function on the model:

// create a new model
var model = Alloy.createModel ("stuff");

// query a model with the id 10
stuffModel.fetch("10") ;

// now show normal date
stuffModel.get ("date_update") ;

// show pretty date
stuffModel .prettyDate () ;

Collections can be extended in the same manner; see the following example where you're
looking for items in the collection that match.

Models and collections can both be created as global singleton instances; they can be created
by using the instance method available on both objects.

// create a new global model of type "stuff"

var globalStuffModel = Alloy.Model.instance("stuff");

// create a new global collection of type "stuff"

var globalStuffCollection = Alloy.Collection.instance ("stuff");

Now to retrieve the object you can call the same method and it will return the object or create
anew instance of one.

www.it-ebooks.info

53

http://www.it-ebooks.info/

o4

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Using Sync Adapters

Sync adapters are commonJS libraries that you can include in your Alloy application to con-
trol how your models interact with the persistence mechanism of your application. In the
default Backbone.js, there is an assumption that there is a library providing AJAX communi-
cation with the server—usually jQuery.

Alloy doesn’t currently provide a default sync adapter to replace the default AJAX interaction
provided by jQuery; you must specify a specific sync adapter to provide that functionality.

Alloy provides a few ready-made sync adapters. In the adapter object, set the type to use
one of the following:

m sqgl for the SQLite database on the Android and iOS platforms.
m localStorage for HTMLS5 local storage on the Mobile web platform.
m properties for storing data locally in the Titanium SDK context.

m sync for mimicking the default Backbone.js AJAX functionality. This behavior sup-
ports REST-based APIs.

Basic Sync Adapter Construction

Because the sync adapter must follow the interface provided by Backbone s, you can follow the
previous table for understanding the methods you must support. Backbone.Sync was
designed to support web/AJAX interaction, which is based on the HT TP verbs listed in the table.

// Alloy Sync Adapter Snippet to show key function sync,
// which handles the mapping of Backbone.Sync calls to
// specific REST actions or API calls
module.exports.sync = function (method, model, options) {

switch (method) ({

// GET: Model.fetch and Collection.fetch methods to
// retrieve data.
case 'read':

break;

// POST: Model.save and Collection.create methods to
// an initialize model if the IDs are not set.
case 'create':

break;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW 55

// DELETE: Model.destroy method to delete the model
// from storage.
case 'delete':

break;

// PUT: Model.save and Collection.create methods to
// update a model if they have IDs set.
case 'update':
break;
default
error = 'ERROR: Sync method not recognized!';

if (error) {
options.error (model, error, options);
model.trigger ('error') ;

} else {
options.success (model, error, options);
model.trigger ('sync') ;

Backbone Model Events

Backbone models trigger events based on certain actions. These actions can be subscribed to
so that developers can take specific actions in the application. The default behavior for
models is to fire a sync event when the sync adapter is called. If the call is not successful, the
model should fire an error event.

// Listening for a sync event from model named

// currentCollection

$.currentCollection.on('sync', function()
Ti.API.info ("the model is being modified") ;

3N

When writing your own adapters, be sure to respect the convention of triggering the proper
events. Follow the conventions of the standard Backbone.js adapter and return the new
model, the network client object, and the original options that were passed into the sync
adapter function.

// Inside of a custom sync adapter when starting

// sync adapter call
model.trigger ('request', model, xhr, options);

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

// Inside of a custom sync adapter on successful
// sync adapter call
model.trigger('sync', model, resp, options);

// Inside of a custom sync adapter on error
// sync adapter call
model.trigger ('error', model, resp, options);

Model-View Data Binding

A simple explanation of model-view data binding is the capability of changes in models and
collections to be automatically reflected in the presentation layer of the application, or the
views. Appcelerator Alloy currently only supports TableViews and the base View object;
additional Appcelerator View objects will be supported in future Alloy releases.

Demo Project for Model View Binding

You can use the Titanium Studio menus to create the new demo project. Follow these steps
to do so:

1. Choose File & New = Titanium Project, as shown in Figure 3-2.

Titani SludioEdit Navigate Search Project Run Commands Window Help
® O O Studio - book§

2 Titanium Project

Ci- » % flew from Template o fa Titanium Module Project
= -~ & Open URL... s -
?:2: App Explarer | Project Ei Open File... (i} ject... E
Close ®W [ElFile

Close All oxw I Folder
= Untitled Text File

% Other...

ame.
Refresh F5
Convert Line Delimiters To L

Re
&
&

Print hksaunders$

Switch Workspace >
Restart

g2y Import...
&3 Export...

Properties a1

1 config.json [bookBindingEx/app]
2 Web Browser [http:/...]

3 detail.js [bookBindingEx/Resources/...]
4 detail.tss [bookBindingEx/app/styles]

FIGURE 3-2: Creating a new Titanium project from the menu command area.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

57

2. Select Default Alloy Project, as shown in Figure 3-3.

8086

New Titanium Project
Project Template

Select the template for this project

Project Templa

Awailable Templates
f2) Alloy (Beta)

=
@ Titanium Classic | A I
WAl

Default Alloy
Project

Two-tabbed
Alloy
Application

Default Alloy Project

Basic "Hello, World!" application using the Alloy MVC framewaork

®@

< Back [Mext >] [cancel |

Finish

FIGURE 3-3: Select the Default Alloy Project option.

3. Figure 3-4 shows the New Titanium Project window, where you define the new proj-
ect’s name and settings. For the project name, enter demo_project. For the app ID,
enter com. ci.demoproject. Finally, enter an URL for the Company/Personal URL.

Creating the Model File

First you need to create a model file. You will use the properties sync adapter to store the

information since you don’t want the complexity of creating a database and defining rows
and columns in this introductory example.

www.it-ebooks.info

http://www.it-ebooks.info/

58

BUILDING CROSS-PLATFORM APPS USING TITANIUM

800 New Titanium Project

New Titanium Project
Create a new Titanium Project e

Project Location

Project name: I I

g Use default location
Location: | /Users/aaronksaunders/Documents/workspace/current_projects Browse...
Project Settings

App Id: [|
Company/Personal URL: | http:/f |

Titanium SDK Version: | 3.0.0.CA &)

Deployment Targets: [iPad @ iPhone [Android BlackBerry [Mobile Web
Set-up/Configure SDKs
Cloud Settings

Titanium Mobile provides services to cloud-enable this application. This provides a wide array of network
features and data objects for your app. Learn more

[Automatically cloud-enable this application

® | <Back |

Next > [cancel | Finish

FIGURE 3-4: Enter the project information in this window.

The model you are creating will have two properties, called make and model. Since you are
using the properties sync adapter, there are no predefined columns to represent these
fields. The JSON representation of this model would look something like this:

"make" : "Honda",
"model" : "Accord"

You can use the Titanium Studio menu command to create the model JavaScript file, as
shown in Figure 3-5. Simply choose New 5> Alloy Model.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

[Project...

M New From Template > —
B Golnto L5 File
10—) = Alloy Model
M 5 Publish » @ Alloy Migration
| tuld > @ Alloy Widget
2':' Sowin § # Alloy Controller
1 |2 Copy (% Folder
2 [Paste {Z PHP Project
¥ Delete & Rails Project
Move... & Ruby Project
i Rename... f& Titanium Module Project
e fa} Titanium Project
a Z IETSE:: & Web Project

2 Refresh £5 4 Other...

M8 Close Project
#3 Close Unrelated Projects

"€ [Install to iOS Device
el [Install to Android Device
EE View Analytics

B8 RunAs
Debug As
Team
Compare With
Restore from Local History...
PyDev

YyYvYyYYY

v

| . Properties Ed|

FIGURE 3-5: Creating a new model from the menu options.

You then enter the model name of cars in the field and select 1ocalStorage. You will be
using the properties sync adapter, but it is not available in the menu. You will edit the
value in the resulting model file, as shown in Figure 3-6.

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

8 0.0

New Model

Create a new Alloy Model

Model name: 1| I

Adapter: v sal 1]

localStorage
ey e

e —

(+] (%]

| Cancel | oK

FIGURE 3-6: Entering a name for your new model.

Open the file and make the edits shown in the following code. The model file should look
similar to this in the end:

// models/cars.js
exports.definition = {
config: {

adapter: {
type: "properties",
collection name: "cars"

}
b
extendModel: function(Model)
_.extend (Model.prototype, {
// extended functions and properties go here

ISF;

return Model;

}l
extendCollection: function(Collection) {
__.extend(Collection.prototype, {
// extended functions and properties go here

I3F;

www.it-ebooks.info

http://www.it-ebooks.info/

61

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

return Collection;

Since you are going to use index.xml for the view, you need to replace the existing content
with the code that follows. When you are finished, the contents of the cars.xml view file
should look similar to this:

<Alloy>
<Collection src="cars" />
<Window id="mainWindow" class="container">
<TableView dataCollection="cars" dataTransform="transform"
dataFilter="filter">
<TableViewRow title="{title}" modelId="{id}" />
</TableView>
</Window>
</Alloy>

First, you declared the collection of cars in the view file:

<Collection src="cars" />

This creates a global instance of a collection object based on the model cars. Since this is a
global instance, you can access it in the code like this:

Alloy.Collections.cars

Next, you associate the collection to the table using the dataCollection property. You
then set a few more properties on the collection for filtering and transforming the data that
appears in the table. In this example, those functions are defined in the controller associated
with the view but could also be global functions. You'll read more about this when you read
about the controller JavaScript file.

<TableView dataCollection="cars" dataTransform="transform"
dataFilter="filter">

www.it-ebooks.info

http://www.it-ebooks.info/

62

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Now replace the code in index.js with the following code. First you will see the trans-
form function. This function is called for every model in the collection and allows the con-
tents of the model to be modified for rendering in the TableView. Note that the properties
returned from the transform function’s model can be actual model properties or proper-
ties derived from the properties in the model.

In the following example, you concatenate the model and the make properties to create the
title that you'll display in the table:

// Convert the model and make into a title property
function transform(model) {
// Need to convert the model to a JSON object
var carObject = model.toJSON() ;
return {
"title" : carObject.model + " by " + carObject.make,
"id" : model.cid

}i

In the following example, you concatenate the model and the make to create the title that
you'll display in the table:

// Show only cars made by Honda
function filter (collection) {
return collection.where({
make : 'Honda'

I3F;

This close event listener is required to ensure the bindings from the TableView are
cleaned up correctly and there are no memory leaks.

// Free model-view data binding resources when this

// view-controller closes

$.mainWindow.addEventListener ('close', function|() {
$.destroy () ;

I3F;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

Next, add an event listener on the window so that when the window is completely open,
you'll set the contents of the collection. The TableView is bound to the collection so when
it detects that the contents of the collection have changed, it will automatically refresh itself.

// add the data to the collection AFTER the window is opened. The
// generated data binding code is listening for specific events

// to force a redraw...

reset is one of them.

$.mainWindow.addEventListener ("open", function() {
Alloy.Collections.cars.reset ([{
"make" "Honda",
"model" "Civic™"
b A
"make" "Honda",
"model" "Accord"
bo A
llmake n n Fordll ,
"model" "Escape"
b A
llmake n n Fordll ,
"model" "Mustang"
bo A
"make" "Nissan",
"model" "Altima"

3N

1) ;

Finally you open the window.

$.mainWindow.open () ;

When you run the application, you should see the output shown in Figures 3-7 and 3-8.

When Alloy generates the code based on the view configuration, it sets the TableView so it
can respond to changes in the collection. As mentioned, all the application needs to do is
trigger one of these events against the collection and the table will refresh itself.

www.it-ebooks.info

63

http://www.it-ebooks.info/

64

BUILDING CROSS-PLATFORM APPS USING TITANIUM

i0S Simulator - iPhone Retina (4-inch 64-bit) / iOS 7.0.3 (11B508)

Carrjer =, 1:10 PM 1]
ivic by Honda

Accord by Honda

FIGURE 3-7: Application running in i0S.

Creating the Collection Object

A few points regarding creation of the collection object.

Even though you can create the collection object in the controller, as so:

Alloy.Collections.instance ("cars") ;

In most cases it will not work if you attempt to create the collection in the same controller
that is associated with the view you are attempting to render. The issue here has to do with
the way Alloy generates code. All of the view code from the view.xml file is executed before
any controller code. When this view code is executed, Alloy performs the event binding dis-
cussed previously. It will fail since the collection objects have not been created yet.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

aQaxy ¢ ywy X T MN1:.05PM

(& Wileychapterthree

Civic by Honda
Accord by Honda

FIGURE 3-8: Application running in Android.

A solution I have used—when you must create the collection in the application code and not
the view file—is to create the collection in a parent controller and then load a different child
view to render the collection. So if you use the current example, the index. js file would
create the collection and then create a new collection-view pair to actually render the table.

The index . xm1l file contents will need to be copied to the new child view. You need to create
anew view-controller pair, naming the new set of files cars to render the information. You'll
use index.js as an overall application initialization starting point:

<!-- index.xml -->
<Alloy>

<!—Nothing needed here -->
</Alloy>

www.it-ebooks.info

65

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

The index. j s file now just sets up collection by creating a global instance. This function will
create the collection based on the model name provided or return the global instance of the
collection if one exists.

// controllers/index.js
// Defining the Collection in the controller and not the view
Alloy.Collections.instance ("cars") ;

You now create the new view-controller pair named cars. It will render the information and
provide the supporting functions for interacting with the model and the view.

You can use the menu commands and interface to create the new controller, as shown in
Figures 3-9 and 3-10.

Studio - wileychapter5/app/models [test.js - Titanium Studio - /Users/aaronksaunders/Docu
3 Run ~ SCH-I545 ~ em - e
[, Project Explorer 57 | = L feedRow.is |kl feedRow.xml W | feedoxml Ll useris Ll photo.js
{3 Proj pl & ¥ = B |l 1 1
— £ Project...
Qtitanium-facet ™" Vo From Template >
2] WebServiceSan Go Into [Z/File
() * wileychapter| d
¥ ap Node ACS - [Folder
¥ 5 assets o e.b') 4 Mobile App Project
¥ (=" control Bﬁll): lis & &1Mobile Module Project
- ol > 2 Node.ACS Project
B co Show In >
lfeed <> Node.ACS Service
U reear = Copy #C -
L friend Paste =Y (Z4 Alloy Controller ©%8C
Llindex % Delete ® @ Alloy Migration ol
'Bﬁ-““‘” Move... ® Alloy Model o8M
Yoaloy REMAME... 2 @ Alloy Widget oBY -
¥ =yl
[s Import... [€ C Project
¥ (=* models i Export... % C++ Project
];.uhom &) Refresh s Convert to a C/C++ Project (Adds C/C++ Nature)
! Close Project ; 9 Example...
userj Close Unrelated Projects
¥ (= styl =
Bus.:::‘ View Analytics [Other... #N
Bl Profile As >
- co
L feed.t Debug As >
L feedR Run As >
triend Restore from Local History... F
index Source » ol 2| B wileychapterS
= Team >
E< outline 2 Cornpare With L . abslistvi
—— ‘ AbsListVi
type filter text Properties EJR - AbsListvi

b O ayvnner. : LTTBAYiat. Tl ooioioo:lo_aio

FIGURE 3-9: Creating a new controller.

A controller is created by using the Alloy.createController function and passing the
name of the desired controller.

// controller/index.js

// create a new controller for view-controller pair
// that will eventually render the table

var carsController = Alloy.createController ("cars") ;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

e.l’\ M

New Controller

Create a new Alloy Controller

f
Controller name: |

| Cancel |

FIGURE 3-10: Name your new controller.

Then you initialize the collection with the sample data. Notice you use the reset method on
the collection to trigger the controller to redraw the content.

// controllers/index.js

// add the data to collection after the
// view-controller pair is created
Alloy.Collections.cars.reset ([{

"make" "Honda",

"model" "Civic™"
b A

"make" "Honda",

"model" "Accord"
b A

llmake n n Fordll ,

"model" "Escape"
b A

"make" "Nissan",

"model" "Altima"

1)

Open the main window in the cars controller to show the content.

// open the view to show table
carsController.mainWindow.open () ;

Show the cars view; notice the collection is not defined in cars.xml as it was in the previ-
ous example.

www.it-ebooks.info

http://www.it-ebooks.info/

68

BUILDING CROSS-PLATFORM APPS USING TITANIUM

<Alloy>
<!-- notice there is no collection defined here -->
<Window id="mainWindow" class="container"s
<TableView dataCollection="cars" dataTransform="transform"
dataFilter="filter">
<TableViewRow title="{title}" modelId="{id}"/
</TableViews>
</Window>
</Alloy>

In the cars. s file, you have moved over the transform and £ilter functions from the
index.js file. You need to do this because the TableView processing is being done in the
cars.js controller and not in the index. js controller any longer.

// controllers/cars.js
function transform(model) ({
// Need to convert the model to a JSON object
var carObject = model.toJSON() ;
return {
"title" : carObject.model + " by " + carObject.make,
"id" : model.cid

Vi

// Show only cars made by Honda
function filter (collection) ({
return collection.where ({
make : 'Honda'

)

// Free model-view data binding resources when view-controller

// closes

$.mainWindow.addEventListener ('close', function()
$.destroy () ;

3K

You can run the application at this point and see the original list of cars displayed when the
application is first launched, as is shown in Figures 3-7 and 3-8.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

Data Binding with Models in Appcelerator
Titanium Alloy

This chapter has covered data binding with model collections, so now it’s time to take a
moment to see how data binding works with models in Appcelerator Titanium Alloy.

This section builds on the example created previously to show a detail screen of a specific car
based on the user selecting a car in the TableView.

Updating the cars.js Controller File

First you make some changes to the existing application’s cars.js controller file to listen
for click events on the TableView and take action when the user clicks on a row in the view.

As you can see in the following code, you are creating the new controller instance with the
Alloy.createController function and passing in the name of the controller to create.

$.table.addEventListener('click', function(event) {
var detailController = Alloy.createController('detail');

3N

The Alloy.createController function allows for passing in arguments in a JavaScript
hash; you pass in the model object of the item you want to render in the detail screen. In this
case you want to show the car object that the user clicked on in the TableView.

You will find the car model object by the object’s ID. Backbone.js allows for querying the col-
lection for specific objects based on the ID. In this case, the properties sync adapter does
not assign specific IDs so you can access the model object by using the _getByCid function
from the Backbone collections.

Now put it all together and open the new car detail.js controller:
$.table.addEventListener ('click', function(event) {
// get the correct model
var model =
Alloy.Collections.cars. getByCid(event.rowData.modelId) ;
// create the controller and pass in the model

var detailController = Alloy.createController('detail', {
data : model

3N

www.it-ebooks.info

69

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

// get view returns the root view when no view ID is provided
detailController.getView () .open ({
modal : true
I3
i

Creating the New Controller/View for the Detail Display

You need to create the new controller and view files for the detail display. You follow the
same process as before of clicking on the project menu and selecting File &> New Controller,
but enter the name detail instead.

The model data binding in the detail.xml view file looks very similar to how the data
binding was implemented for the collection in the cars . xml file. You specify a model object
for the view to work with, but you add the instance property to indicate that this is not a
global variable, but one that is local to the collection associated with this view.

<Model src="cars" instance="true" id="car">

Next you associate the model of the window object; notice the use of the $ variable when
specifying the object. This is to indicate once again that the object is a local instance variable
defined in the controller.

<Window id="detailWindow" model="$.car">

Access the model’s properties once again using the $ variable to access the local object.

<Label id="make 1bl" text="{$.car.make}" ></Labels>
<Label id="model 1bl" text="{$.car.model}" ></Label>

Putting it all together, notice the addition of the But ton object, which has been added to the
window. In the detail. js controller, you listen for the click event on the button to trig-
ger the closing of this window.

<!-- detail.xml -->
<Alloy>
<Model src="cars" instance="true" id="car">
<Window id="detailWindow" model="$.car" >
<Label id="make 1lbl" text="{$.car.make}" ></Labels>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

<Label id="model 1bl" text="{$.car.model}" ></Label>
<Button id="closeBtn">Close Window</Buttons>
</Window>
</Alloy>

Here’s the associated . t ss file for the car detail view:

".container":
backgroundColor: "white"
I
"#detailWindow" : {
title:"Car Detail Window",
layout: 'vertical',
backgroundColor: 'white!'
b
"Label" : {
top:10,
textAlign: 'center',
font: {
fontWeight: 'bold',
fontSize:18
b
color: '#000',
height:Ti.UI.SIZE
b
"#closeBtn" : {
top : "20dp"

Completing the Controller for the Detail View

The controller for handling events and showing the detail view has a few interesting changes.

Asnoted, you can pass parameters into the controller when creating it; the following pattern
is one way to get the first argument if provided or set it to an empty object:

var args = arguments[0] || {};

www.it-ebooks.info

71

http://www.it-ebooks.info/

72

BUILDING CROSS-PLATFORM APPS USING TITANIUM

The last new pattern specific to data binding and models relates to how you set the data on
the model you want to display in the view. Recall that you extracted the arguments from the
controller and assigned them to the local variable called args. You now set the local car
model object using the data in args . data.

$.car.set (args.data.attributes) ;

This can also be done using the Model . toJSON () function, as follows:

$S.car.set (args.data.toJSON()) ;

You use set since data binding is listening for specific events to trigger the redrawing of the
view; set will trigger that event.

The final code for the detail.js controller file is shown here:

var args = arguments[0] || {};

// close the window when button is clicked

$.closeBtn.addEventListener ('click', function()
$.detailWindow.close() ;

)

// instance variable used in data binding.
// we do this set here to trigger the events
// that will cause the data to be rendered
$.car.set (args.data.attributes) ;

// Free model-view data binding resources when this

// view-controller closes

$.detailWindow.addEventListener ('close', function()
$.destroy () ;

)

You can run the application at this point and see the original list of cars displayed when the
application is first launched, as is shown in Figures 3-7 and 3-8.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

When you click on one of the cars listed in the view, you will be taken to the detail view. It
shows the information of the specific car you selected, as shown in Figures 3-11 and 3-12.

i0S Simulator - iPhone Retina (4-inch 64-bit) / i0S 7.0.3 (11B508)

Carrier ¥ 10 P 1
onaa

Accord

Close Window

FIGURE 3-11: The detail view when you click on Honda Accord from the main iOS list.

www.it-ebooks.info

http://www.it-ebooks.info/

74

BUILDING CROSS-PLATFORM APPS USING TITANIUM

QY YYyY N

Car Detail Window

Honda

Accord

Close Window

FIGURE 3-12: The detail view when you click on Honda Accord in main Android list.

Creating Widgets

Widgets are small MVC-based components that exist inside your application. The objective of
a widget is to promote reusability across multiple projects. There are also multiple compo-
nents provided by Appcelerator and third-party providers that can assist in quickly con-
structing basic functionality in your application.

Widgets are made up of the same components as full-blown applications, views, controllers,
and styles. They can be used to encapsulate repeated functionality in your application or on
multiple projects. This chapter uses a simple toggle button widget to explain how a widget is
structured.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

You need to create a new test project for the widgets section of this chapter. Follow the
instructions for creating a new project as described in the beginning of the chapter and then
create a widget. You can also create the widget using the command line from the terminal,
like so:

alloy generate widget buttonToggle

Or you can create one from the Titanium Studio File menu. Be sure to name your widget, as
shown in Figure 3-13.

8 0.0

New Widget
Create a new Alloy Widget

Wwidget name: [|

Cancel | OK

FIGURE 3-13: Naming the widget.

When the widget is created, Titanium will add the base files to your projects inside the direc-
tory titled widgets, as shown in Figure 3-14.

e 006 () widgets

(s Bmim) (%) (¢-)(a)(2] @

FAVORITES _ Name 4| Date Modified
Q Dropbox v & I?_lxttonToggle Today 3:09 PM
= . v [assets Today 1:37 PM
= All My Files v (1 controllers Today 1:37 PM
@ AirDrop |#] widget.js Today 1:57 PM
,,;\; Applications v [styles Today 1:37 PM
— | widget.tss Today 1:59 PM

Deskto -

R v [views Today 1:37 PM
@ Documents || widget.xml Today 1:59 PM
0 Downloads widget.json Today 1:37 PM
H Movies
J7 Music

Pictures
@ aaronksaunders
(2] Mobile Applications

FIGURE 3-14: Widgets directory structure.

www.it-ebooks.info

75

http://www.it-ebooks.info/

76

BUILDING CROSS-PLATFORM APPS USING TITANIUM

As you can see, the file structure in the widgets directory matches the overall structure of
the project with the views and controllers directories.

This example creates a simple button that toggles between on and off. There are many ways
to create such a button, but this approach was used to demonstrate the capabilities of
widgets.

First you need a widget .xml file that contains the view that will be rendered when the
widget is added to a view or window in the project. Add the following code to the widget .
xml file:

<Alloy>
<View id="container" >
<Button id="on"s>Button is On</Buttons>
<Button id="off"s>Button is Off</Buttons>
</Views>
</Alloy>

You have created a view with the ID container to hold the buttons you're going to toggle.
This code also created two buttons and specified an ID for each one. One button is on and the
other is off. Finally, text was added to the buttons. Since there is no specific layout informa-
tion provided, the buttons will be drawn on top of each other, which is what you want.

Next up is the . tss file, which will contain style information for the view. Add the following
code to the file:

"#container": {

height: Ti.UI.SIZE,
width: Ti.UI.SIZE

What you are doing here is wrapping the buttons in a view container. You set the width and
height to Ti.UI.Size to make sure that the view is only as big as the items you have placed
inside.

The controller will draw the widget on the screen and handle the user interaction with the
buttons. Modify the widget . js file by including the following code:

// event handler for when the user clicks button
$.container.addEventListener ('click', function(_event)

// hide the clicked item, show the unclicked one

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

toggleButtonByIdClicked(event.source.id);
3]
// _buttonId name of the id clicked
function toggleButtonByIdClicked(buttonId) {
if (_buttonId === "on")
$.on.hide() ;
$.off.show() ;
} else if (_buttonId === "off") ({
$.on.show() ;
$.off . hide () ;

The container or button wrapper is accessed through $.container. You need to listen for
any clicks inside the container. When you set the listener at this level, you'll get an event
when the buttons are clicked.

Each of the buttons is assigned an ID in the widget . xml file. When the buttons are clicked,
the ID is passed in the event . source object.

The rest of the code is pretty straightforward. You toggle the visibility of the objects using
hide or show, depending on which item received the click event.

You can now add the widget to the view. You can do this either through the parent project or
by using the view file, as follows:

<Alloy>
<Window id="mainWindow" class="container"s>
<Require type="widget" src="buttonToggle" id="buttonWidget"/>
</Window>
</Alloy>

This means the controller that was using the widget has no change.

// open the window
$.mainWindow.open () ;

Or, you can programmatically add the widget to the view from inside the controller, as
follows:

// create the widget
var toggleBtnWidget = Alloy.createWidget ("buttonToggle") ;

www.it-ebooks.info

77

http://www.it-ebooks.info/

78

BUILDING CROSS-PLATFORM APPS USING TITANIUM

// get the main view from the widget
$.mainWindow.add (toggleBtnWidget.getView ()) ;

// open the window
$.mainWindow.open () ;

The final step in using the but tonToggle widget is adding information about the widget to
the config. json file, which can be found in the project’s app directory.

{
"global": {},
"env:development": {},
"env:test": {},
"env:production": {},
"os:ios": {},
"os:android": {},
"dependencies": {

"buttonToggle": "1.0"

Creating a More Complex Widget

Sometimes you need to initialize the widget before it is displayed in the view. Remember the
idea behind widgets is that they can be reusable components across multiple projects. So it is
very likely that you might need to configure or set up the widget differently based on the
context of the project it is used in.

Since you can pass parameters into the widget, you can configure the widget at startup. Start
with the buttonToggle widget you created and enhance it by processing arguments. Follow
the same pattern used when processing controller parameters:

var args = arguments[0] || {};

// pass in default setting or set to 'on'
args.defaultState = args.defaultState || 'on';

You use the toggleButtonByIDClicked function at startup to simulate clicking on the
button and to set the proper button as visible.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 APPCELERATOR TITANIUM ALLOY OVERVIEW

// set the initial state of the button

if (args.defaultState === "on") {
toggleButtonByIdClicked ("off") ;

} else if (args.defaultState === "off") ({
toggleButtonByIdClicked ("on") ;

}

Here’s the completed widget . js file:

var args = arguments[0] || {};
args.defaultState = args.defaultState || 'on';

// set the initial state of the button

if (args.defaultState === "on") {
toggleButtonByIdClicked ("off") ;

} else if (args.defaultState === "off") ({
toggleButtonByIdClicked ("on") ;

}

// event handler for when the user clicks button
$.container.addEventListener ('click', function(_event) ({

// hide the clicked item, show the unclicked one
toggleButtonByIdClicked(event.source.id) ;

|3

/**
* buttonId name of the id clicked
*/
function toggleButtonByIdClicked(buttonId) {
if (_buttonId === "on")
$.on.hide() ;
$.off.show() ;
} else if (_buttonId === "off") ({
$.on.show() ;
$.off . hide() ;

You now can modify the widget declaration to set the default button parameter. You have the

view.xml markup file for passing in the parameter.

www.it-ebooks.info

79

http://www.it-ebooks.info/

80

BUILDING CROSS-PLATFORM APPS USING TITANIUM

<Alloy>
<Window id="mainWindow" class="container"s>
<Require type="widget" src="buttonToggle" id="buttonWidget"
defaultState="off"/>
</Window>
</Alloy>

And you have the programmatic approach when instantiating the widget from the
controller:

// create the widget

var toggleBtnWidget = Alloy.createWidget ("buttonToggle", null,
"defaultState": "on",
"id" : "toggleBtnWidget"

3K

// get the main view from the widget
$.mainWindow.add (toggleBtnWidget .getView ()) ;

// open the window
$.mainWindow.open () ;

Summary

This chapter covered the three key components of the Model-View-Controller pattern. You
saw real examples of how they are implemented in Appcelerator Titanium Alloy. You also
worked with the Widget framework, which can be used to develop reusable components that
are completely self-contained. Chapter 4 moves on to creating a cross-platform photo-sharing
application.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter
Building a Cross-Platform Social
Photo-Sharing Application

BECAUSE THE FOCUS of the book is on mobile development and not mobile design, this
chapter uses a simple design to illustrate the concepts it’s going to teach. Of course, mobile
design is critical to the success of your app in the market. Mobile applications don’t have
user’s manuals; if users can’t make sense of the app after a few clicks, they will probably
never use it again.

When building designs for clients, we usually try to create wireframes or simple mockups of
the application screens. This process provides a baseline for what we believe we are trying to
build and the images stimulate questions in a way that sometimes words on a page cannot.

Using Balsamiq to Design Mockups

I like to use simple tools for laying out the information since this is really more of a requirements/
features/functions phase and not a user interface design phase. A simple tool I have used
with success (and the one that’s used for the images in this chapter) is Balsamigq.

www.it-ebooks.info

http://www.it-ebooks.info/

82 BUILDING CROSS-PLATFORM APPS USING TITANIUM

The website sums up to two keys reasons I like Balsamiq:
m Mockups reproduce the experience of sketching on a whiteboard, but this allows them
to be distributed, reviewed, and updated.

m These wireframes remove the distraction of the user interface design and put the focus
on the features and the functions. The design team can then use these wireframes in a
later phase of the project.

Let’s walk through the sample mockup screens. To start with, Figure 4-1 shows a typical User
Login screen.

- N

—

all#ecaG 12:26 PM

LOGIN

[CREATE ACCOUNT]

[FACEBOOK CONNECT]

©,

- J

FIGURE 4-1: A typical User Login screen.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 BUILDING A PHOTO-SHARING APPLICATION 33

The point of the User Login screen is three-fold:

m Allows the users to log in to the system.
m Allows the users to create an account with an email and password.
m Allows the users to create an account with their Facebook credentials.

Figure 4-2 shows the screen that allows the users to create an account using their Facebook
credentials. It allows the users to enter or edit account information, including a first name,
last name, and a profile photo.

- A

—>

.||| ABC3G 12:26 PM

[USERNAME \

\ EMAIL |

| FIRST NAME \

| LAST NAME \

[PROFILE PHOTO]

[SAVE] { CANCEL]

©),

- J

FIGURE 4-2: A standard Account Creation screen.

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Figure 4-3 shows the Main Application screen, showing the Feed tab.

s N

—D
all#ec3G 12:26 PM
TITLE |

Ve

/
N

com|snms

] | FRIENDS \ SETTINGS \

©

- J

FIGURE 4-3: Main application screen with tabs.

The Main Application screen’s job is the following:

m Allows users to toggle between the three tabbed sections of the application—Feed,
Friends, and Settings.

m Allows the users to take a new photo by clicking the photo button.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 BUILDING A PHOTO-SHARING APPLICATION

The Feed tab of the Main Application screen is the default screen. It has the following
characteristics:

m It's a scrolling view of the images associated with the user and any people the current
user has identified as friends.
m Each photo has a title, tags, and captions associated with it.

m The photo container contains an action area that allows users to view or add comments
and to share the image.

m Has an action area where there is a button for adding and viewing comments and for
sharing the current image on Facebook.

Figure 4-4 shows the Photo Comments screen.

4)

—>

'||| ABC 3G 12:26 PM

« COMMENTS [»

jolholelholhe

©),

- J

FIGURE 4-4: List view of a Photo Comments screen.

www.it-ebooks.info

85

http://www.it-ebooks.info/

386 BUILDING CROSS-PLATFORM APPS USING TITANIUM

The purpose of the Photo Comments screen is as follows:

m Shows a list of comments associated to the current photo.

m The comment element contains the photo of the user who entered the comment, the
time and location of the comment, and the comment text.

m Photo comments can be deleted by the user who entered the comment by swiping the
comment row.

m New comments can be created by clicking the New Comment button, which is shown
in the upper-right corner of the image.

m Users click the back button to return to the Main Application screen.

Figure 4-5 shows the New Photo Comment screen.

4)

.lll ABC 3G 12:26 PM m

'%| NEW COMMENT [/

double-click ©
1|

a[wlelr[T[v]u]1]o]P]
[A[s[o]F[o[H]J[K][L]

+ 8000000 «
23| @ return

©

" J

FIGURE 4-5: The New Photo Comment screen.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 BUILDING A PHOTO-SHARING APPLICATION

The New Photo Comment screen has the following capabilities:

m Users can enter the text of the new comment for the specified photo.

m Users can share the comment and the photo on Facebook from this screen.

m The user’s location is captured with the comment entry.

m Users can cancel the creation of the comment and return to the Photo Comments screen.

Figure 4-6 shows the Friends/All Users list screen.

4)

—>
'||[A5c3(; 12:26 PM
FRIENDS ALL USERS
‘ Search for User(s) X ‘

Giacomo Guilizzoni
Marco Botton
Mariah Maclachlan

Valerie Liberty

0 @ &

Guido Jack Guilizzoni

FEED [FRIENDS] SETTINGS

©

- J

FIGURE 4-6: A list view of friends and all users.

Note the following functions of this screen:

m Includes a toggle button at the top to filter the list to display the user’s current list of
friends or to allow users to search for friends.

www.it-ebooks.info

87

http://www.it-ebooks.info/

38

BUILDING CROSS-PLATFORM APPS USING TITANIUM

The user list contains a search filter to narrow down the list of users when adding
friends.

The friend display row contains the profile photo, the username, and the first and last
names.

When the user is viewing the Friends list, they can remove selected elements from it.

When the user is viewing the list of all users, they can add the selected elements to the
Friends list.

Figure 4-7 shows the Settings screen, which has the following characteristics:

Shows the username, the first and last names, and the profile photo.

m All elements can be changed except the username.

/

\

— >

||| ABC 3G 12:26 PM
10 Friends

|EMAIL |

| USERNAME |

| FIRST NAME \

|LAST NAME |

(on

Notifications | () oFF)

-

] FEED | FRIENDS | SETTINGS |

G,

)

FIGURE 4-7: The Settings screen.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 BUILDING A PHOTO-SHARING APPLICATION

m Shows a Facebook on/off switch, which toggles Facebook functionality.

m Shows a notification on/off switch, which toggles notification alerts from the
application.

Figure 4-8 shows the Photo Capture screen, which is a native camera interface for taking
photos or using photos from the image gallery. It enables users to associate photos with their
accounts.

4)

—>

Jll#ec3G 12:26 PM

©,

-)

FIGURE 4-8: Platform-specific photo capture screen.

Walking Through the Phone-Sharing App

This section walks through the process of building a mobile application for sharing photos
through Facebook. The application will also allow you to comment on photos and choose

www.it-ebooks.info

39

http://www.it-ebooks.info/

90

BUILDING CROSS-PLATFORM APPS USING TITANIUM

other member’s photos to include in your feed. Basically, this is a very simple version of all of
the photo-sharing applications that exist today.

Along with showing you how to build this application, this section exposes you to the power-
ful benefits of Appcelerator Cloud Services and the Appcelerator framework. You don’t need
a Ruby or PHP developer for the backend services since they are provided for you; you don’t
need a hosting provider or a database administrator or a database designer; and most impor-
tantly, you don’t need to be experienced in Objective-C or Java. This is where the huge ben-
efits and efficiencies of the Appcelerator platform start to shine.

The following sections walk through the features and map them to the specific technologies.

User Accounts

This feature leverages the core functionality of the Appcelerator Cloud Services User objects.
It also allows the users to create accounts utilizing an existing account in Facebook.
Appcelerator Cloud Services allows you to integrate/create accounts using a Facebook ID.

The User Settings screen provides some basic information about the users, allows the users
to log out of the application, and allows them to configure the Facebook integration.

Camera

Appcelerator Framework native device integration provides access to the Camera and the
photo gallery. Users have complete access to the flash, as well as the front-facing and rear-
facing cameras, which will provide users with the perfect shot to share on their mobile
applications.

Photo Uploading

The Appcelerator Cloud Services Photo object provides the ability to upload photos and
resize them into various dimensions for full-screen viewing, viewing as a thumbnail preview,
and for sending to a friend at the original size. You need all of those different sizes so that the
app efficiently utilizes the mobile device’s bandwidth and user interface experience. It’s
important to avoid creating poor experiences by attempting to render large images
unnecessarily.

You'll also get photo storage in the cloud that can scale to your needs. Don’t underestimate
the value of cloud storage when dealing with images; this is a powerful feature that simplifies
the process.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 BUILDING A PHOTO-SHARING APPLICATION

The app will also determine the location of the user when the photo was taken so you can
show the images on the map. This enables use of Appcelerator Cloud Services to perform
geo-queries in order to find images based on distance from a certain location. A title, tags,
and a simple caption are also saved with each photo; all of those pieces of data can be queried
on, just like the location.

Social Integration with Facebook

As mentioned previously, the powerful integration of the Facebook API Appcelerator allows
you to create accounts based on existing Facebook credentials. However, the integration does
not stop there. You can use the API to share the photos from the application. Even if you
choose not to associate your user account with Facebook, you can still connect to Facebook
to share the images with your friends.

When uploading the images, the app will leverage not only the Appcelerator Facebook inte-
gration, but also the image-processing feature of Appcelerator Cloud Services. This way, the
larger image is uploaded to Facebook automatically. Therefore, when users view the image on
a PC or want to print a photo, they will have the better quality original.

Finding Friends

What good is a social mobile application if you cannot find friends to share your photos with
or if it is too difficult to follow your friends’ photo updates? Not very good. Appcelerator
Cloud Services has the ability to find friends, create friends lists, and block access to content
based on the list of friends.

The app will give users the ability to find friends and create a feed of just their friends’ photos
for a more personalized experience. If a user’s friend’s photos get too racy or annoying, they
can use the Friends List feature to remove them from their feed.

Commenting and Rating of Media

Appcelerator Cloud Services provides a way to allow users to comment and rate objects. You
can associate the object with other comments, posts, and photos, which is what you'll do in
the example application in this book. Users will be able to comment on photos, like photos,
and see how others commented on photos in the application. They’ll also be able to query the
comments based on the users or on the photo. Users can also delete their comments if they
decide to make a change.

Just as with photos, the app will associate a location with the commenter so users can

see how far their images have been shared across the globe, based on the location of the
comments.

www.it-ebooks.info

91

http://www.it-ebooks.info/

92

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Push Notifications

Appcelerator Cloud Services provides objects for sending push notifications to users. You can
send these notifications to specific users, user groups, or to “channels” that can be created for
users to subscribe to. In this example application, users receive notification when they get a
new friend, when a friend posts a photo to the system, or when they receive a comment
about one of their photos. This is one way to keep users engaged and returning to the
application.

Application Flow
Figure 4-9 shows the high-level flow of how the application fits together.

Settings
Screen
Login or . Friends/)
Register > Main Users 3 Users 3 Friends
: Screen Screen Screen
Window Screen
Enter Share
Registration Photo S Photo s Comment
Information Screen Screen Screen
Enter
Additional New
Registration Comment
Information Screen

FIGURE 4-9: How the application flows at a high level.

Summary

Now that you have a basic understanding of the user interface and have seen sample dia-
grams of the layout, you have a foundation for what you will build throughout the rest of the
book. The diagrams are representative of what you will build, but since you will be building a
cross-platform solution, there will be some differences in the user interface elements on i0S
and Android. Chapter 5 explains the development process you'll go through when building
cross-platform apps.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

Development Process for
Cross-Platform Apps

IN CHAPTER 4 you walked through the application’s entire user interface and reviewed the
wireframes/mockups for it. You reviewed the high-level features of the overall application.
The next step is to write some code!

Because the most important piece of functionality for the cross-platform social photo-
sharing application that you're building in this book is integration with the camera, this
chapter jumps right into the camera functionality so you can see some immediate value in
the product you're building.

When adding new functionality into Alloy applications, the usual pattern is to introduce new
files for all of the components of the Model-View-Controller framework you read about in
Chapter 3.

Creating the Project for This Chapter

To create the project you'll use in this chapter, you need to open Titanium Studio and create
a new project. If you are unfamiliar with this approach, review Chapter 2, where new project
creation is covered.

Select File & New = Titanium Project, as shown in Figure 5-1.

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

c nds _ Window _ Help
e E - I 2% Titanium Project
f‘g m"l‘JR:mp e @ Titanium Module Project =
e @ PHP Project B
Open File... 24
&) Web Project I
b oiocy Close %KW @ Ru.by Pro.ject
> @ wilé Close All 08W & Rails Project
Save s [Project...
Save As... |=l File
Save All 1+ 88S (¥ Folder
Revert [/ Untitled Text File
Move... 4 Other... &8N
Rename... F2
&) Refresh g5/ extended functions go here

FIGURE 5-1: Creating a new Alloy project in Titanium Studio.

Figure 5-2 shows the window where you need to enter a project name and application ID. Be
sure to check the Automatically Cloud-Enable this Application option. Then click Next.

® 00 New Titanium Project
New Titanium Project
Project name must be specified e

Project name: |]

@ Use default location

Location: ' /Users/aaronksaunders/Documents/workspace/wiley_book Browse...

Project Settings
App Id:

Company/Personal URL: Iht(p://

Titanium SDK Version: | 3.1.0.v20130111105802 : J

Deployment Targets: @ iPad # iPhone | Android | BlackBerry (¥ Mobile Web
Set-up/Configure SDKs

Cloud Settings

Titanium Mobile provides services to cloud-enable this application. This provides a wide array of network
features and data objects for your app. Learn more

@1 Automatically cloud-enable this application

@ | <Back | Next > | cancel Finish

FIGURE 5-2: Setting project-specific properties when creating a new project.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

Be sure to use the Alloy Project Template provided. When selecting the project template,
choose Two-Tabbed Alloy Application (shown in Figure 5-3) and then click Next.

® 006

New Titanium Project
Project Template

Select the template for this project

Available Templates:

fa) Titanium Classic

g a

Default Alloy Two-tabbed Default Alloy Two-tabbed
Project Alloy Project Alloy
Application Application

Two-tabbed Alloy Application

Titanium's traditional two-tabbed application created using the Alloy MVC
framework.

©)

< Back

Next > [

Cancel |

Finish
FIGURE 5-3: Select the Two-Tabbed Alloy Application template.

When you're done entering information, click the Finish button. After the project is created
and the application is registered with ACS, you will be presented with the project configura-
tion screen shown in Figure 5-4.

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

W u photo.js Hﬁ- feed.js h:l, user.js ‘u app.js | Resources “&; index.js @ Dashboard 3 =0
#8 'Wileytigram' Configurations
Application Modules
Application Id: | com.wiley.TIgram [Module ® Bl [] =
Version: 1.0 @ ticloud * . * "
Publisher: | aaronksaunders

Publisher URL: | http://www.clearlyinnovative.com

Icon: }appicon.png | o

Copyright: [2013 by aaronksaunders

not specified

Description:

Build Properties

Titanium SDK: [3.0.2.GA B

* The latest detected version will be used

Android Runtime: V& @ .
Cloud Services

@

Deployment Targets Production Key: uyFTmfmBtYWLeINpmUTZMtVHgKnminEk

| ipad Development Key: ZRb6wsrl0QLJInRVZypsSal4EHMXGmDS

iPhone
 Android
BlackBerry (@)
| Mobile Web
configure...

Overview ‘ tiapp.xml f

FIGURE 5-4: Enter the information in the required fields to set up your project.

Preconfiguring Appcelerator Cloud Services

In this application, you'll be integrating Appcelerator Cloud Services as the datastore for the
information required by the application. To integrate with ACS, you need to have a user
account with authorized credentials. Because you'll be working with the user account in later
chapters, you'll create an Administrative User Account for now directly in ACS. This account
is used throughout the application until the user accounts are introduced in a later chapter.

Enter the following URL into your browser: https://my.appcelerator.com/apps.
Then find your application by the project name you specified and click on Manage ACS. If you
are asked to log in again, you'll need to enter your credentials and continue. Figure 5-5 shows
a list of all of the applications you have created, those with Cloud Services enabled and those
without.

www.it-ebooks.info

https://my.appcelerator.com/apps
http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

© OO F(791) Titans (Appcelerato: x | A Your Applications x
&« c https:/ /my.appcelerator.com/apps/titanium
a Products Community Resources Partners Customers Company Contact
ﬁ weplay_mobileapp Subscription Plan
App Explore
7‘ wheredoivote Subscription Plan
App D App Explore

Subscription Plan

K wileytigram

Ap) Manage ACS App Explore
K window.function Subscription Plan
App Details App Explore
?‘ wordpress_json Subscription Plan
App Details App Explore
7‘ youtubetest ww Subscription Plan
App Details « ACS App Explore

FIGURE 5-5: The Appcelerator Cloud Services console list shows your ACS-enabled apps.
Now youre going to create an admin user that will have access to all objects in the
application.

First switch to the development instance of ACS by clicking the Development button in the
ACS console. See Figure 5-6.

000 | FroyTitans X | AYour x) A Cloud Servic % £ The Aw Shucks Page x
&« c https:/ /cloud.appcelerator.com /apps /3766e5cf-ff81-4d93-b677-ac3e67c14d5d v O PIEO =
a Products ~ Community ~ Resources Partners Customers Company Contact
My Apps / wileytigram-production Development

Get Support ©

[290 Maragorert | g e

wileytigram-production Details Manage Data in wileytigram-production
Status Running Chats (0)
APP Key Checkins (0)
Show OAuth Credentials Collections (0)
Export Data® B Export Data Events{0)
Data Files (0)

FIGURE 5-6: Select the proper button to switch between development and production services.

www.it-ebooks.info

http://www.it-ebooks.info/

98

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Scroll to bottom of the screen and click the User link, then click the tab Admin Users, then
the button Create an Admin User, as shown in Figure 5-7.

& (791) Titans (Appcelerator x A Your Applications X A\ Appcelerator Cloud Servic. % A\ The Aw Shucks Page x
& (= https://cloud.appcelerator.com/3766e5cf-ff81-4d93-b677-ac3e67c14d5d/users QD eEO =
a Products Community Resources Partners Customers Company Contact
My Apps / wileytigram-production

Get Support ©

Back to App Management
o oF 9 Go To Docs ©

P v
Admin Users in wileytigram-production

Admin user will appear here after being created.

Total 0 results was found.

Aappceleratnr' vy [f 2 & |=

help & support privacy policy legal informatiof

FIGURE 5-7: Click the Create an Admin User button.

Now you need to enter the required information for creating the admin user (see Figure 5-8).
For this example, enter wileytigram admin for the username and wileytigram admin
for the password to keep things simple. When you're finished, click Submit to create the
admin user.

Create an Admin User [X]
Email
Username
Password *

Password Confirmation *

First name

Last name

Role

Select photo or photo id
Tags

BT s

FIGURE 5-8: Enter the minimum information to create the administrative user.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

After the admin user is created, the console should be updated to look like Figure 5-9.

My Apps / wileytigram-development

Get Support §

K t M
P Back to App Management Go To Docs

CULVEEEY Admin Users

Users in wileytigram-development

v Users ID email usermname Updated At @ Edit/Delete
) 51507e0224b68308320dd2e4 wileytigram_admin 2013-03-27T13:33:12+0000
Total 1 result was found. Perpage:| 10 *

FIGURE 5-9: Updated view of the console after the administrative user has been created.

Now that you have set up the user account, you can exit the ACS console and get back to the
application that needs to be created.

Creating the User Interface

The Alloy template you used when constructing the project created the basis for the applica-
tion you're going to build, but you need to make some changes to the files for better applica-
tion structure.

First you'll create the controllers and views for the three tabs specified in the wireframes that
you created in the previous chapter. You can do this by using the menu item in Titanium
Studio for creating Alloy objects.

Creating the Tab Group Files

Right-click on the project icon in the Project Explorer and select New &> Alloy Controller, as
shown in Figure 5-10. You need to do this once for each of the tabs you're creating (Feed,
Friends, and Settings). Figure 5-11 shows the window where you enter the new Alloy con-
troller’s name.

www.it-ebooks.info

99

http://www.it-ebooks.info/

100 BUILDING CROSS-PLATFORM APPS USING TITANIUM

|8 O O Studio - wileytigram/app/controllers/friends.js - Titanium Studio — /Users/4

App Expl... L[Project E... &3 =0 & Dashboard W | index.xml 1 TiApp Editor L, index.js Y
95 %yQ.M. Y

ystem

[Project...
New From Template
Go Into * File
- @ Alloy Model
£ Publish @ Alloy Migration
Build @ Alloy Widget
syl - Alloy Controller
= Copy Y Folder
Paste BV {& PHP Project
X Delete & Rails Project
Rename... & Ruby Project
& Titanium Module Project
&} Titanium Project
& Web Project

23 Import...
23 Export...

2| Refresh
Close Project
Close Unrelated Projects

[Other...

[Install to iOS Device
View Analytics

Run As
Debug As =
Team
2% Compare With ‘Simulator - wileytigram [Titanium iOS Simulator] iOS Simulator
o= outline R Restore from Local History...
type filter tex PyDev >

Properties

FIGURE 5-10: Creating a controller in Titanium Studio.

00

New Controller

Create a new Alloy Controller

Controller name:

| Cancel | oK

FIGURE 5-11: Entering the name of the controller.

After you create an Alloy controller for all three of the tabs, you should have a project direc-
tory that looks similar to Figure 5-12.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM 101

® 0 06 Studio - wileytigram/app‘

T2 App Expl... |[[Project E... $2 = O || @ Dashboard
OB v i{‘v By~
® Local Filesystem
&) wileytigram
& app
£ assets
& controllers
W feedjs
‘M friends.js
'_ index.js
'_ settings.js
£ models
& styles
W feed.tss
'_ friends.tss
'_ index.tss
M settings.tss
B views
afeed.xml
afriends.xml
% index.xml
4§ settings.xml
! alloy.js
! config.json
S README
£ modules

FIGURE 5-12: View of the Project folder in Titanium Studio.

Modifying index.xml and index.js for a Better Application Structure
The initial index.xml file created by the project template assumes that all of the windows
are created in the index controller. Because you know your application will become more
complex than that, you're going to use the individual controllers created previously to sepa-
rate and better organize the application. To do this, you'll use the Alloy require capability
in the index.xml view file.

In the original index.xml, shown here, you created the tabs and windows associated with
the tabs directly in the one controller and view set.

<Alloy>
<TabGroup>
<Tab title="Tab 1" icon="KS nav ui.png"s>
<Window title="Tab 1">
<Label>I am Window l</Labels>
</Window>
</Tab>

www.it-ebooks.info

http://www.it-ebooks.info/

102

BUILDING CROSS-PLATFORM APPS USING TITANIUM

<Tab title="Tab 2" icon="KS nav_views.png">
<Window title="Tab 2">
<Label>I am Window 2</Labels>
</Window>
</Tab>
</TabGroup>
</Alloy>

This could very quickly become overly complex and difficult to maintain. Let’s make some
changes. Here’s the updated index.xml, which provides for a better-structured

application:
<!-- index.xml -->
<Alloy>
<TabGroup>
<!-- Tabs included via <Require> tag -->

<Require id="feedController" src="feed"/>
<Require id="friendsController" src="friends"/>
<Require id="settingsController" src="settings"/>
</TabGroup>
</Alloy>

Notice use of require for separation of functionality into the individual controllers. You
specify the name of the resource file containing the controllers; notice you don't include the
.J s extension on the filename when using require. Also notice how you specify the ID for
each of the controllers created in index . xm1. This will provide access to the controller asso-
ciated with the required file.

One last change before you move on. You need to clean up the index.js controller file
for now to just call $.index.open (). That call will initiate the action of creating the
tabGroup and all of the associated views and controllers you will see in the next section.

Reviewing the Basic Window and Tab File Structure

Now take a look at what is in each of the three views. The window and the tab creation are
now in the specific view files. Each of the files looks similar to the following listing. The only
difference is that the name for the file, window, and tab correspond to the specific functions
mentioned—feed, friends, or settings.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM 103

<!-- feed.xml -->
<Alloy>
<Tab title="Feed">
<Window title="Feed">
<Label>This is a Feed tab</Labels>
</Window>
</Tab>
</Alloy>

Setting the Default Styles for the Window and Tab Through the
app.tss File

The tab and window title are both defined. Note that the code also removes the tab icon;
you'll replace it later with a more appropriate icon. The code sets a label string in the window
so that there is a visible indicator when you switch tabs.

The final change moves all of the style settings from index. tss to app. tss so the defaults
can be utilized by all views in the application. To do this, you need to create a new file called
app - tss and then copy the contents of index. tss to the newly created file:

"Window": {
backgroundColor: "#fff"
b
"Label": {
width: Ti.UI.SIZE,
height: Ti.UI.SIZE,
color: "#000",
font: ({
fontSize: "18sp",
b
textAlign: 'center'
}

There are some default settings for application-wide resources that you can define once here
in the application. This will help with minimizing some potential cross-platform issues when
building your app. They are shown here and should be added to the app . tss file:

www.it-ebooks.info

http://www.it-ebooks.info/

104

BUILDING CROSS-PLATFORM APPS USING TITANIUM

'Label [platform=android] ':
color: '#000' // Android default to black
b
'Window [platform=android] ': {
modal: false // android windows all heavyweight
b
'TextField': {
borderStyle: Ti.UI. INPUT BORDERSTYLE ROUNDED, // default style
borderColor : 'black!'
I
'TextField[platform=android] ': {
borderRadius: 6, // common default style
borderColor : 'black',
borderWidth : 1
b
'ImageView[platform=ios] ':
preventDefaultImage: true // never image while loading remote

You can see the use of the platform attributes, [platform=ios], on the styles; it is a very
powerful feature that you will use often as an alternative to platform-specific folders.

Once you've copied the file contents, rebuild the application to view the new three-tabbed
application. Figure 5-13 shows the result.

Enabling the Camera Functionality on the Feed Tab

To demonstrate the functionality early, you're going to see what happens when you integrate
the camera API now. The application should take a photo every time the user clicks the
camera button on the Feed page. You want the application to take the image from the camera
along with some miscellaneous information and display it in the feed. This Feed view will be
displayed in a table view (using the TableView control) inside the window you've already

created.

You will incrementally build out the functionality of the application through the chapters
and then apply more professional styling in the end. The book’s focus is on demonstrating
value from the application early and often.

Updating the Feed View

Open the feed.xml file and add the code to display the camera button. You need to provide
an ID for the button so you can access it from the feed controller file. You also need to add
the TableView control to the window.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

Carrier = 10:41 AM

Feed

FIGURE 5-13: Basic application with the three tabs.

This approach will work for the IOS application since the navigation buttons are a standard
pattern. Later in the chapter you will add Android support by introducing the ActionBar into
the application. Notice in the view code that follows how the RightNavButton element is
only used in the iOS application.

Notice in the following code how all of the objects have IDs. It's a good idea to get into the
habit of adding IDs to objects when you add them to the view. These IDs will be required
when you access the objects in the controller and also when you want to apply styles in the
.tss files.

<Alloy>
<Tab id="feedTab" title="Feed">
<Window id="feedWindow" title="Feed">
<RightNavButton platform="ios">
<Button id="cameraButton">Camera</Buttons>

www.it-ebooks.info

105

http://www.it-ebooks.info/

106

BUILDING CROSS-PLATFORM APPS USING TITANIUM

</RightNavButtons>
<TableView id="feedTable"></TableViews>
</Window>
</Tab>

</Alloy>

Adding Code to Listen for a Click on the Camera Button

It’s time to start adding some controller code to respond to events in the views. You will start
with the camera button that you added to feed.xml. Open controllers/feed.js to
add the following code, which will listen for the click on the button you created. Remember
to use the $ variable to access objects in the view.xml file; it makes it easy to access the
cameraButton object to associate events or to change the object’s properties.

OS_IOS && $.cameraButton.addEventListener ("click", function(_event) {
$.cameraButtonClicked(event) ;

)

// handlers
$.cameraButtonClicked = function(_ event) {
alert ("user clicked camera button") ;

Adding a Custom Table Row to TableView

Every table needs rows, and since you're going to create a complex row, it is best to separate
functionality into a separate view and controller. You use the same process when creating the
controllers for tabs to create the controller and view for the rows. Name the rows feedRow.

Take a minute to look at the wireframe you're using for the design so you can see how the
design maps to the XML structure used in the feedRow.xml file. Figure 5-14 shows the
three tabs and Figure 5-15 shows the wireframe mockup.

Adding the FeedRow View
Here is the code for feedRow . xml view file:

<Alloy>
<TableViewRow class="row">
<View class="container"s
<Label id="titlelLabel"></Label>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

<View id="imageContainer"s
<ImageView id="image"></ImageViews>

</Views

<View id="buttonContainer"s
<Button id="commentButton">Comment</Buttons>
<Button id="shareButton">Share</Button>

</Views

</Views>
</TableViewRow>
</Alloy>

axy ¢AYyy NXFT ,H10:39AM

ALLOY.

Feed Friends Settings

FIGURE 5-14: The application with its three (empty) tabs.

www.it-ebooks.info

107

http://www.it-ebooks.info/

108

BUILDING CROSS-PLATFORM APPS USING TITANIUM

c—
'.“ ABC 3G 12:26 PM
©
TITLE ‘
~ /,r
. yd
\\‘\ ,'(. /
e
VRN
,"/ _‘
/ AN
COMMENT | SHARE
] | FRIENDS { SETTINGS \

O,

- J

FIGURE 5-15: Wireframe of the FeedRow view.

The view container holds the whole row. The Label with the ID titleLabel will be
inside of the container as will all of the other objects nested inside the XML element con-
tainer. Next you create another view container with the ID imageContainer. Then you
create an ImageView control with the ID image that will hold the photos. You place it inside
of the imageContainer so it will be easier to place and style in the view.

Then you create another view container buttonContainer, this is also used for placement
of the buttons. It’'s a good idea to add these containers for logical placement of objects.
Finally, you create the two buttons—commentButton and shareButton—that will
respond to click events and perform the appropriate actions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

You might be wondering where the code for the Feedrow controller is. Usually the view and
the controllers are created in pairs when structuring the application. The FeedRow you created
will populate the table with objects from data retrieved using Appcelerator Cloud Services.
Since you have not incorporated Appcelerator Cloud Services yet, the code for the feedRow
controller is covered later in the chapter.

Integrating the Camera Functionality into
the Application

Now that you have the interaction between the view and the button and you are capturing
the click in the controller, you can start to integrate the core Appcelerator functionality.

Accessing the Device Camera in Appcelerator

Looking at the Appcelerator documentation, you find the Titanium.Media object, which
contains the showCamera function you'll use to access the camera functionality. The
documentation at http://docs.appcelerator.com/titanium/latest/#!/guide/
Camera_and Photo Gallery APIs provides an excellent overview of the functionality.
We recommend you reference this Appcelerator documentation for specific details about the
method and options.

Side-Stepping the Camera for Now

Since the camera works only when testing and you've not learned about the camera in full
at this point, you need a way to get images into the application without using the camera.
The following code solves the problem by determining whether the application is running in
the simulator.

If the application is running on the simulator, you use the method Titanium.Media.
openPhotoGallery and allow users to select from the photo gallery. Otherwise, you
need to call Titanium.Media.showCamera to open the camera so the users can take a
photo.

var photoSource = Titanium.Media.getIsCameraSupported()?

Titanium.Media.showCamera : Titanium.Media.openPhotoGallery;

www.it-ebooks.info

NOTE

109

http://docs.appcelerator.com/titanium/latest/#!/guide/Camera_and_Photo_Gallery_APIs
http://docs.appcelerator.com/titanium/latest/#!/guide/Camera_and_Photo_Gallery_APIs
http://www.it-ebooks.info/

110

BUILDING CROSS-PLATFORM APPS USING TITANIUM

When the users click the camera button, the application will open the camera object using
Titanium.Media.showCamera (). The API will display the camera and the default options
for taking a picture. If the users take a new picture, a media object is returned that contains
the information needed for displaying the photo in the Feed tab.

You'll create a function for processing the image for uploading to ACS, but will stub it out for
now and just return the image with a temporary title, including the timestamp. This is suffi-
cient at this point for getting an image to display in the TableView row.

Adding Camera API Calls to Feed Controller

Take a moment to look at the code added to the feed.js controller to respond to the click
event and take the picture or load an image from the device’s photo gallery:

$.cameraButtonClicked = function(_ event) {
alert ("user clicked camera button");

var photoSource = Titanium.Media.getIsCameraSupported() °?
Titanium.Media.showCamera : Titanium.Media.openPhotoGallery;

photoSource ({
success : function(event) {
processImage (event .media, function(_photoResp){
photoObject = _photoResp;
I3F;
b
cancel : function() {
// called when user cancels taking a picture

b

error : function(error) ({
// display alert on error
if (error.code == Titanium.Media.NO CAMERA) {
alert ('Please run this test on device');
} else {
alert ('Unexpected error: ' + error.code);

}

saveToPhotoGallery : false,
allowEditing : true,

// only allow for photos, no video
mediaTypes : [Ti.Media.MEDIA TYPE PHOTO]

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

function processImage (mediaObject, _callback) {
// since there is no ACS integration yet, we will fake it
var photoObject = {
image : mediaObject,
title : "Sample Photo " + new Date()

// return the object to the caller
_callback (photoObject) ;

}

This code retrieves the picture and the event . media object holding the picture that the user has
taken. Following the wireframes provided, you need to place the image in the table view. You can
accomplish that by creating the TableViewRow control, adding the items to the row, and then
inserting the row into the table view. See http://docs.appcelerator.com/titanium/
latest/#!/guide/TableViews for a detailed explanation about how to do this.

You will accomplish the creation of the customized tableRow that matches the wireframes
by creating a TableViewRow control from the feedRow. js controller, which you created
earlier in the application.

The file feedRow. js is straightforward assignment of the image object to the ImageView
control and the text to the titleLabel property.

Revisiting the FeedRow Controller

Recall that earlier in the chapter you created the feedRow.xml view but did not complete
the feedRow. js controller. Now that you have some data to add to the row you can com-
plete that process.

Note that you can pass variables into the controllers when you create them. In this case,
you're passing in the photoObject returned, which is a JavaScript object containing the
image and its title. The controller can take only one additional parameter, so you pass in this
object as a JavaScript hash and then retrieve each property and assign it to the appropriate
object.

In this case, the arguments passed into the controller are the image and title, which is exactly
what you need to set the properties in the feedRow . xm1 view.

Add this code to feedRow. js:

var args = arguments[0] || {};

www.it-ebooks.info

111

http://docs.appcelerator.com/titanium/latest/#!/guide/TableViews
http://docs.appcelerator.com/titanium/latest/#!/guide/TableViews
http://www.it-ebooks.info/

112

BUILDING CROSS-PLATFORM APPS USING TITANIUM

// this is setting the view elements of the row view
// based on the arguments passed into the controller
$.image.image = args.image;

$.titleLabel.text = args.title || '';

Revisiting the Feed Controller to
Add the Rows to the Table

Inside of feed.js you update the code to insert the row into feedTable every time a
photo is taken. You utilize the returned value of the function processImage () to pass to
the controller feedRow. Once the controller is created, calling the method getview () on
the controller will return the TableViewRow object, which is then inserted into
feedTable:

// code snippet from success handler in Titanium.Media.showCamera
success : function(event) ({

processImage (event .media, function(photoResp) {

// create the row
var row = Alloy.createController ("feedRow", photoResp) ;

// add the controller view, which is a row to the table
if ($.feedTable.getData().length === 0)
$.feedTable.setData([]) ;
$.feedTable.appendRow (row.getView (), true);
} else {
$.feedTable.insertRowBefore (0, row.getView (), true);

)
I

Adding Some Style to the Feed Table

To get the layout of the rows to look similar to the wireframes, you need to include some styl-
ing in the feedRow. tss file.

If you want the row to leave some room around the edges of the screen for example, you set
the width of the row container to 90 percent of the screen width, as so:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM 113

".container": {
layout: "vertical",
width : '90%"'

b

Since this application is being built for iOS and its screen width is 320dp, you have to set the
size of the imageContainer for the photo to 300dp. Set the size of the actual photo to
280dp to leave room for a 10dp border. To center the image in the imageContainer, you
set the top and the left properties of the image to 10dp:

"#imageContainer" :
width : '300dp’',
height :'300dp',

b

"#image" : {
top : 'l0dp',
left : '10dp’',

width : '280dp"',
height : '280dp',

b

For the button area, create but tonContainer and set the height to 42dp. This should be a
sufficient size for the buttons. The width is set to Ti.UI.FILL, which instructs the button
to use the entire width of the parent container. Set each of the buttons to be 50 percent of
the width of the buttonContainer and set a default height of 32dp for the buttons.

"#buttonContainer" : {
layout : 'horizontal',
width : Ti.UI.FILL,
height : '42dp'

I

"#commentButton" : {
width : '50%"',
height : '32dp'

I

"#shareButton" : {
width : '50%"',
height : '32dp'

}

www.it-ebooks.info

http://www.it-ebooks.info/

114 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Figure 5-16 shows the app with a sample photo shown on the screen.

QXY P YYY U 11:01 AM

Feed Friends Settings

Sample Photo Thu May 152014
01:04:17 GMT-0400 (EDT)

DIFIGH]I]

FIGURE 5-16: Application running with a sample photo.

Using the Android ActionBar for

the Camera Button

If you are following along using Android as your development platform, you will have real-
ized that there currently is no way to access the camera or the photo gallery to load images
into the application. Normally in an Android application this would be accomplished through
the inclusion of menus and menu items. In this application, you will use Appcelerator’s
implementation of the ActionBar.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

Setting Up the index.xml View to
Support the ActionBar

For the ActionBar to work properly, you need to set up the Android menus and associate
them with the activity associated with tabGroup you created. You need to specify a func-
tion, called doOpen, to call when the window is opened to set up the menus in the ActionBar.
You'll also set the ID on the tabGroup object so it can be accessed inside the index.js
controller.

<!-- index.xml -->
<Alloy>
<TabGroup id="tabGroup" onOpen="doOpen'>
<!-- Tabs included via <Require> tag -->
<Require id="feedController" src="feed"/>
<Require id="friendsController" src="friends"/>
<Require id="settingsController" src="settings"/>
</TabGroup>
</Alloy>

Modifying the index.xml View to Support the ActionBar

What the following code does is get the activity and add the menus to the activity. The T1i.
Android.SHOW AS ACTION ALWAYS parameter will keep the menu item in the ActionBar
so it appears as a button. You also need to set the menu item’s click event to call the same
function to display the camera. You will notice this is the same function that was used in the
i0S version of the application.

function doOpen () {

if (OS_ANDROID) ({
var activity = $.getView() .activity;

var menultem null;

activity.onCreateOptionsMenu = function(e) {
if ($.tabGroup.activeTab.title === "Feed") ({

menultem = e.menu.add ({
//itemId : "PHOTO",
title : "Take Photo",
showAsAction : Ti.Android.SHOW_AS_ACTION_ALWAYS,
icon : Ti.Android.R.drawable.ic_menu camera

)

www.it-ebooks.info

115

http://www.it-ebooks.info/

116 BUILDING CROSS-PLATFORM APPS USING TITANIUM

menultem.addEventListener ("click", function (e) {
$.feedController.cameraButtonClicked() ;
i
}
}i

activity.invalidateOptionsMenu() ;

// this forces the menu to update when the tab changes
$.tabGroup.addEventListener ('blur', function(event) {
$.getView () .activity.invalidateOptionsMenu() ;

3K

After the doOpen function is added, you remove the $. index.open () callandadd $. tab-
Group.open () to the end of the index. js controller.

Adding the Alloy Synec Adapter and

Appcelerator Cloud Services

The current implementation of the application follows the MVC pattern discussed earlier in
the book except for the persistence layer and the model. First you will learn how to replace
the plain JavaScript object with the Alloy model object and then you'll integrate Appcelerator
Cloud Services to save the model object to the cloud.

To integrate Appcelerator Cloud Services, you need to create the sync adapter to communi-
cate with the cloud services.

Creating the User Model

To create a new model object, right-click on the project icon and then select New = Alloy
Model, as shown in Figure 5-17. Enter user as the model name. You'll create the user model
first since you need to log in before doing any interactions with ACS.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

® O 06 Studio — wileytigram/app/styles/app.tss - Titanium Studio - /Users/aaronk

| friends.xml W | settings

75 App Expl... [Project e 83| = B |/ friends.js

|| feed.xml

Local Filesystem
) * wileytigram =4 Proi
& app [Project...

£ modules New From Template
& plugins Go Into
£ Resources

 File
- Alloy Model

2 publish > @ Alloy Migration
Build > @ Alloy Widget
Show In > @ Alloy Controller

B manifest = Copy *®C el

S README Paste £V {@ PHP Project

28 tiapp.xmi % Delete ® @ Rails Project

. Connectior NN, &) Ruby Project

& Titanium Module Project

2
Q‘] IEmpor:... & Titanium Project
e & Web Project
o .~ | &lRefresh 5 .
GZ Outline 5% |) 9 Other... %N
N —Closcrojed: { (G TS binTgit
type filter text Close Unrelated Projects .

FIGURE 5-17: Creating a model in Titanium Studio.

Extending Alloy Models

The user model will be extended multiple times because there are specific functions required
that do not follow the basic CRUD format that the sync adapter pattern closely follows.
Extending the model is just a way you add functionality, such as login and logout.

This section focuses only on logging the users in; account creation and setup are discussed
later in the book. When you learn how to implement those features, you'll also enhance the
user model and the ACS sync adapter to support that functionality. Since extending the user
model handles the login functionality, you won'’t be creating the sync adapter quite yet.

Logging the User In

Logging users in to ACS is pretty straightforward; when they provide a username and pass-
word, the app makes the Cloud.Users.login API call.

The models and adapter utilize the ti.cloud. js module, which is provided by Appcelerator.
The process maps the appropriate REST verbs to the correct methods on the ti . c1loud object
for performing the reads, writes, updates, searches, and queries. This section starts with the
user object, so it might be wise for you to review the ACS documentation on ti.cloud in
preparation for additional details. You can find it at http://docs.appcelerator.com/
titanium/latest/#!/api/Titanium.Cloud.Users.

Open the user. js model you just created and extend the model to support the user login
function. The following code has been added and you can see—if you reference the

www.it-ebooks.info

117

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Users
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Users
http://www.it-ebooks.info/

118 BUILDING CROSS-PLATEORM APPS USING TITANIUM

documentation—that the login process is exactly as specified in the documentation. You
provide a username and password and a function to call when the request is completed.

exports.definition = {
config : {
"adapter" : {
||t-y-pe" . ||acs|| ,
"collection name" : "users"

b

extendModel : function (Model) {
__.extend (Model.prototype, {

/**
* log user in with username and password
*
* @param {Object} login
* @param {Object} password
* @param {Object} callback
*/
login : function(login, _password, _callback) {
var self = this;
this.config.Cloud.Users.login ({
login : _login,
password : _password
}, function(e) {
if (e.success) {
var user = e.users|[0];

// save session id
Ti.App.Properties.setString
('sessionId', e.meta.session id);
Ti.App.Properties.setString
('user', JSON.stringify (user)) ;
_callback && _callback({
success : true,
model : new model (user)
I3
} else {
Ti.API.error(e) ;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

_callback && _callback ({
success : false,
model : null,
error : e

3N
3N
}

// end extend

return Model;

b

extendCollection : function(Collection) {
_.extend(Collection.prototype, {

// extended functions go here

3N

// end extend

return Collection;

Two important things to notice about the model configuration:

m The setting of the adapter type tells Alloy which sync adapter file to load for this

model.

m The collection name associates the model to the correct ACS object. This enables
the model to access methods such as create and update on objects.

You won't call a login method on the user model just yet. All models in Alloy must have a sync
adapter associated with them. You create the model and specified the adapter as acs so now
you need to create the sync adapter. You can use some of the code provided from the other

adapters to get you started.

www.it-ebooks.info

119

http://www.it-ebooks.info/

120

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Creating Appcelerator Cloud Service Sync Adapter

Since there is no sync adapter for Appcelerator Cloud Services, you'll see how to construct a
simple one for supporting the objects included in this application. This adapter will provide
the basic functionality for interacting with the object and illustrates the minimal require-
ments for constructing your own sync adapters in the future.

It’s time to create the framework for the simple ACS sync adapter. Create a file called acs . js
and add it to a newly created file path of app/alloy/sync/acs.js. Inside this file, add
the following code as the basis for the adapter. (This code is copied from the localStorage.
js adapter and is the common setup code utilized in the Alloy implementation of sync
adapters.)

function S84 ()
return ((1 + Math.random()) * 65536 |
0) .toString(16) .substring (1) ;

}

function guid()
return S4() + S4() + "-" + S4() + "-"
+ S4() + "-" 4+ S4() + "-" + S4() + S4() + S4();

function InitAdapter (config)
Cloud = require("ti.cloud") ;
Cloud.debug = !0;
config.Cloud = Cloud;

function Sync(model, method, opts) {
// Will be filled in later!!

var _ = require("alloy/underscore"). ;
module.exports.sync = Sync;
module.exports.beforeModelCreate = function(config) {
config = config || {};:
config.data = {};

InitAdapter (config) ;
return config;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

module.exports.afterModelCreate = function(Model) {
Model = Model || {};
Model .prototype.config.Model = Model;
return Model;

Vi

There are two important changes to note about this new code:

m All of the code from the sync function has been removed. It will be added later has
you consider the specific concerns of each of the models you're going to support with
the adapter.

m The code in InitAdapter has changed to instantiate the ti.cloud object. This is
done so you can access it within the sync adapter and so you can access the object
through the model configuration. Using the ti.cloud object is how you will access
the methods created by Appcelerator to interface with the Cloud Service’s objects.

Creating the Photo Model

You can use the Titanium Studio menu to create a new model object for the applications.
Recall that you simply right-click on the project icon and select New = Alloy Model. Then
enter user as the model name. You'll create a photo model to store the information from
the photo using ACS.

You need to make only two adjustments to the file to set the adapter to acs and the
collection name to photos; the bulk of the work is done in the sync adapter that you'll
be updating. See the modified models/photo. js file for changes to the photo model:

exports.definition = {
config : {

"adapter" : {
n typell . llacsll ,
"collection name" : "photos"

}
b

extendModel : function (Model) {
_.extend (Model.prototype, {

// extended functions go here

3N

// end extend

www.it-ebooks.info

121

http://www.it-ebooks.info/

122

BUILDING CROSS-PLATFORM APPS USING TITANIUM

return Model;

b

extendCollection : function(Collection) {
_.extend(Collection.prototype, {

// extended functions go here

3K

// end extend

return Collection;

b

Modifying the ACS Syne Adapter to
Support the Photo Model

Throughout the application, you'll be referencing the Appcelerator Cloud Services ti.cloud
library to access the methods you need to interact with the services. To implement the save
functionality of the photo model, youmake a call to Cloud . Photos. create ().Seehttp: //
docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Photos
for more information about working with Photo Objects and Appcelerator Cloud Services.

You can modify the sync adapter you created at assets/alloy/sync/acs.js to handle
photo models and user models. At this point, you're going to add the processACSPhotos
function with code, but processAcSUsers will be added as a functional placeholder with
no additional code.

You branch on the specific object type by using the collection name specified in the
model file for each of the specific models. You branch on the if-condition based on the spe-
cific object type you are processing in the sync adapter.

function Sync (method, model, options) ({
var object name = model.config.adapter.collection name;

if (object name === '"photos") ({
processACSPhotos (model, method, options);

} else if (object name === "users") {
processACSUsers (model, method, options);

}

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Photos
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Photos
http://www.it-ebooks.info/

123

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

Inside of processACSPhotos you'll create a switch statement to support all of the REST
verbs that the ACS adapter must support. For now, though, you'll add only the functionality
for creating a new model and saving it to Appcelerator Cloud Services.

/**
* this is a separate handler for when the object being processed
* is an ACS Photo
*/
function processACSPhotos (model, method, options) {
switch (method) {
case "create":
// include attributes into the params for ACS
Cloud.Photos.create (model.toJSON(), function(e) {
if (e.success) ({

// save the meta data with object
model .meta = e.meta;

// return the individual photo object found
options.success (e.photos[0]) ;

// trigger fetch for UI updates
model.trigger ("fetch") ;

} else {
Ti.API.error ("Photos.create " + e.message) ;
options.error (e.error && e.message || e);
1) i
break;

case "read":

case "update":

case "delete":
// Not currently implemented, let the user know
alert ("Not Implemented Yet");
break;

To save the photo, you'll make use of the functionality provided by the ACS library. All you
need to do is ensure that you have the proper parameters set and the library does the rest.
When passing the JavaScript object back into the success handler, the Backbone.js frame-
work will update the model object and return a properly structured and functional model.

www.it-ebooks.info

http://www.it-ebooks.info/

124

BUILDING CROSS-PLATFORM APPS USING TITANIUM

If you review the user.js file and look at the login function, you can see how the ti.
cloud object is used to call the 1ogin method on the user object. This is consistent with
the pattern you'll use through the user and photo models.

Model and Sync Adapter Working Together

Now that you have the sync adapter in place and have created the user and photo models, it’s
time to access the Appcelerator Cloud Services features; but you must log in to Appcelerator
Cloud Services before doing anything else. At this point in the development process, you
simply log the user into ACS whenever the application starts up. This is not the final solu-
tion, but as stated earlier, this approach resolves the requirement of being logged in to access
ACS objects and methods.

User Login with User Model

You're going to use the administrative user created earlier through the console and log in to
ACS. Because you do not want the application to continue until the user is successfully
logged in, the idea is to open the main view only after a successful login.

Replace the code in index . j s with the following code, which creates a user object from the
model file and calls the 1ogin method that you added to the model object.

// when we start up, create a user and log in
var user = Alloy.createModel ('User');

// we are using the default administration account for now
user.login("wileytigram admin", "wileytigram admin",
function(_ response) {
if (_response.success) {
// open the main screen
$.index.open() ;
} else {
alert ("Exrror Starting Application " + _response.error) ;
Ti.API.error ('error logging in ' + _response.error) ;
}
P

This will log you in to Appcelerator Cloud Services and return the user object associated with
the account. You'll use this information later in the display and account management, but
there is no use for the information at this time.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

Here’s a sample JSON response from logging in a user or querying a user object:

{
"users": [
{
"id": "51507e0224b68308320dd2e4",
"created at": "2013-03-25T16:40:34+0000",
"updated at": "2013-03-27T02:50:54+0000",
"external accounts": [],
"confirmed at": "2013-03-25T16:40:34+0000",
"username": "wileytigram admin",
"admin": "true",
"stats": {
"photos": {
"total count": 8
I
"storage": {
"used": 13069205
}
}
}
1,
"success": true,
"error": false,
"meta": {
"code": 200,
"status": "ok",
"method name": "loginUser",
"session id": "wQGKymtbiazRLsRSDSGQ-tJpén4"
}
}

Using the Photo Model in the Feed View

In the earlier implementation, the app did not save the photos anywhere; it simply took the
photo from the camera and added it to the row. You're learning to incrementally add func-
tionality to the application, so now you’ll see how to change the code to save the photo to
Appcelerator Cloud Services. After receiving a successful response from the server, the app
will add the photo to the feed.

www.it-ebooks.info

125

http://www.it-ebooks.info/

126

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Modifying processImage to Create a Photo Model and Save It to ACS
Calls to the Appcelerator Cloud Services are asynchronous so you need to change processImage
to support the asynchronous nature of the Appcelerator Cloud Services library. You have to
make the API call to save the photo to Appcelerator Cloud Services. Then, when the app receives
aresponse from the server, you have to tell it to take the appropriate next steps.

In processImage, you need to provide Appcelerator Cloud Services method Cloud.
Photos.save () the correct parameters. You can use the image from the camera or gallery
for the one required parameter, photo. Note that this code shows a temporary title; the final
settings help define the sizes of the images you want the service to create.

Additional information on the parameters for this library call can be found at http://
cloud.appcelerator.com/docs/api/vl/photos/create.

var parameters = {
"photo" : mediaObject,
"title" : "Sample Photo " + new Date(),
"photo_sizes[preview]" : "200x200#",
"photo_sizes[iphone]" : "320x320#",

// We need this since we are showing the image immediately
"photo sync sizes[]" : "preview"

This code creates two photos from the original image of various sizes. One size is for display-
ing the photo in the feed table, which is appropriate for displaying on mobile devices, and the
other size is for a PC display, which would be a larger photo.

The ACS sync adapter is simple enough that, after setting the parameters, you just need to
create the model and call the save method.

var photo = Alloy.createModel ('Photo', parameters) ;

photo.save ({}, {
success : function(model, response) { debugger;

Ti.API.info('success: ' + model.toJSON()) ;
_callback ({
model : _model,

message : null,
success : true

I3

www.it-ebooks.info

http://cloud.appcelerator.com/docs/api/v1/photos/create
http://cloud.appcelerator.com/docs/api/v1/photos/create
http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM 127

error : function(e) { debugger;
Ti.API.error('error: ' + e.message);
_callback ({

model : parameters,
message : e.message,
success : false

After you make these changes to the processImage method, you have integrated the ACS
and Alloy models. The Alloy model save method takes an options parameter, which contains
the success and error callbacks. The method returns from the ACS sync adapter the newly
created model and the server’s response on success. When an error occurs, the save method
returns the original parameters and the error message that Appcelerator Cloud Services
returned. The save method then calls the callback method, called callback, that was
passed into processImage and attempts to add the image to the feed table.

Here’s a sample JSON object response when saving or querying a photo object:

{
"photos": [
{

"id": "51525f8eelblba6667001160",

"filename": "b2b87f0.png",

"size": 897507,

"md5": "1f6555c2a04a89415c4fb4l12ed20£f224",

"created at": "2013-03-27T02:55:11+0000",

"updated at": "2013-03-27T02:55:11+0000",

"processed": false,

"user": |
"id": "51507e0224b68308320dd2e4",
"created at": "2013-03-25T16:40:34+0000",
"updated at": "2013-03-27T02:50:54+0000",
"external accounts": [],
"confirmed at": "2013-03-25T16:40:34+0000",
"username": "wileytigram admin",
"admin": "true"

www.it-ebooks.info

http://www.it-ebooks.info/

128

BUILDING CROSS-PLATFORM APPS USING TITANIUM

"title": "Sample Photo Tue Mar 26 2013 22:55:...",
"urls": |
"preview": "http://storage.cloud... preview.png",
"original": "http://storage.cloud... _original.png"
b
"content type": "image/png"
}
1,
"success": true,
"error": false,
"meta": {
"code": 200,
"status": "ok",
"method name": "createPhoto"

Modifying the Feed Controller to Display a

Photo After It Is Processed by the Cloud

This section returns to the cameraButtonClicked function in controllers/feed.js
and shows you how to update the behavior of the success handler on the method call to work
with the new asynchronous processImage method. The major changes are that the
program now handles an error condition from processing the image and the object
processResponse contains the model associated with the saved photo, as well as additional
error information if needed.

processImage (event.media, function (processResponse)
if (processResponse.success) {
// create the row
var rowController = Alloy.createController ("feedRow",

processResponse.model) ;

// add the controller view, which is a row to the table

if ($.feedTable.getData().length === 0) {
$.feedTable.setData ([]) ;
$.feedTable.appendRow (rowController.getView(), true);
} else {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

$.feedTable.insertRowBefore (0, rowController.getView(),
true) ;
}
} else {
alert ("Error saving photo " + processResponse.message) ;

3N

The final change is to update controllers/feedRow. js to support the new object you
need to render. The real change here is that the app is now passing the results of the photo
being saved to Appcelerator Cloud Services, which means you're working with an Alloy.
Model object not a plain JavaScript object. There are two approaches to accessing the attri-
butes on the model, and they provide the same results—model.toJSON () and model.
attributes.

var model = arguments([0] || {};

//

// this is setting the view elements of the row view
// based on the arguments passed into the controller

//

$.image.image = model.attributes.urls.preview;
$.titleLabel.text = model.attributes.title || '';

// save the model id for use later in app
$.row_id = model.id || '';

Figure 5-18 shows the final screenshot of the app with cloud services integration.

List the Saved Photos at Startup

You don't need to make any changes to the app in order for models/photo.js to support
querying for all objects. You need to update the Appcelerator Cloud Services sync adapter to
execute the query when the app needs to read the model or collection objects. The adapter
must be intelligent enough to determine whether it is getting one object or a list of objects.

The ACS ti.cloud.js library has a method to get one Photo object by the object’s ID and
another method to query or search for a photo object utilizing additional parameters. See
http://cloud.appcelerator.com/docs/api/v1l/photos/showand http://cloud.
appcelerator.com/docs/api/vl/photos/query for more information about these
methods.

www.it-ebooks.info

129

http://cloud.appcelerator.com/docs/api/v1/photos/show
http://cloud.appcelerator.com/docs/api/v1/photos/query
http://cloud.appcelerator.com/docs/api/v1/photos/query
http://www.it-ebooks.info/

130

BUILDING CROSS-PLATFORM APPS USING TITANIUM

QXY Yy Y NHUE 11:01 AM

Feed Friends Settings

Sample Photo Thu May 152014
01:04:17 GMT-0400 (EDT)

FIGURE 5-18: Application displayed same as before, but now with a photo from ACS.

The following code shows how to update assets/alloy/sync/acs.js to support the
read functionality in processACSPhotos (). It checks the parameters for the model
passed in to see if it contains an ID, and if so, the program knows it’s retrieving an individual
object. Otherwise, it assumes it’s getting a collection of objects.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM

case "read":
model.id && (opts.data.photo id = model.id);

var method = model.id ? Cloud.Photos.show : Cloud.Photos.query;

method ((opts.data

|| {}), function(e) {
if (e.success) {

model .meta e.meta;
if (e.photos.length === 1) {
opts.success (e.photos [0]) ;

} else {
opts.success (e.photos)

}

model.trigger ("fetch") ;
return;
} else {
Ti.API.error ("Cloud.Photos.query " + e.message);
opts.error (e.error && e.message || e);

3N

break;

The program uses the ACS library call Cloud.Photos.show () when retrieving a single
object and uses the method Cloud. Photos. query () when retrieving multiple objects.

Adding the loadPhotos() Method to the Controller

The following code updates controllers/feed.js to display a collection of photos
returned from ACS sync adapter using the fetch method on the collection. The fetch
method callbacks work the same as the save method callbacks on the model object in
regards to responding to success and error response from the cloud services API. This code
processes the results of the fetch by looping through the collection and adding each of the
model objects to the table view. It then utilizes controllers/feedRow. js to create the
rows for the table view. You will use this method to initialize the view with the photos saved
in the cloud whenever the application starts up.

www.it-ebooks.info

131

http://www.it-ebooks.info/

132 BUILDING CROSS-PLATFORM APPS USING TITANIUM

S.initialize = function(){
loadPhotos () ;
// Add the above code for the function initialize to feed.js

function loadPhotos () {
var rows = [];

// creates or gets the global instance of photo collection
var photos = Alloy.Collections.photo ||

Alloy.Collections.instance ("Photo") ;

// be sure we ignore profile photos;

var where = {
title : {
"Sexists" : true

photos.fetch ({
data : {
order : '-created at',
where : where
I
success : function(model, response) {
photos.each (function (photo) {
var photoRow = Alloy.createController ("feedRow",
photo) ;
rows .push (photoRow.getView()) ;
P
$.feedTable.data = rows;
Ti.API.info (JSON.stringify(data)) ;
b
error : function(error) ({
alert ('Error loading Feed ' + e.message);
Ti.API.error (JSON.stringify (error)) ;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 DEVELOPMENT PROCESS FOR CROSS-PLATFORM 133

Add the previous code to feed. js to supporting loading photos.

Next, you need to update controllers/index. js to display the recent photos when the
application starts. You do this by calling the initialize method on the feed controller.
You gain access to the public methods in the feed controller by using $. feedController.
initialize (), which is why the code adds the ID to the require objects when they were
included in the view views/index.xml.

Here is the index . xml file exposing the other controllers through their IDs:

<Alloy>
<TabGroup>
<!-- Tabs included via <Require> tag -->
<Require id="feedController" src="feed"/>
<Require id="friendsController" src="friends"/>
<Require id="settingsController" src="settings"/>
</TabGroup>
</Alloy>

The initialization method, which is accessed from controllers/index.js, calls the
loadPhotos method discussed previously.

// when we start up, create a user and log in
var user = Alloy.createModel ('User') ;

// we are using the default administration account for now
user.login("wileytigram admin", "wileytigram admin",
function(response) {
if (_response.success) {

// open the main screen
$.index.open() ;

// pre-populate the feed with recent photos
$.feedController.initialize() ;

} else {
alert ("Error Starting Application " + _response.error);
Ti.API.error ('error logging in ' + _response.error) ;

www.it-ebooks.info

http://www.it-ebooks.info/

134

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Summary

This chapter covered a lot of complex and new concepts, so feel free to return to it in the
future. You will continue to add features in the application, but they will all require updates
to the sync adapter to add new model objects. You will also always add view and controller
pairs like you did here with the feed view and feed controller.

You also started working with the Appcelerator Cloud Services API to interact with the cloud
services and predefined objects. The documentation links provided in this chapter are very
thorough—they explain all of the parameters as well as how to utilize them in various
scenarios.

Here’s a summary of the concepts that this chapter covered:

m Alloy project creation

m Photo and user model creation

m Extending Alloy model functionality

m Controller creation

m Getting views directly from the controller

m View creation

= Styling objects in Alloy

m Integration with camera and gallery API

m Working with the TableView control and creating complex table view rows
m Creating asynchronous adapters

m Using the Appcelerator cloud services library

m Working with Alloy collections
Chapter 6 takes the app to the next level. There, you learn to add functionality to the sync
adapter to support the Appcelerator Cloud Service Review object, which you will use to allow

the application to support comments on photos. You will follow the same pattern of creating
additional models, views, and controller files to support the new feature.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter
Integrating Comments

YOU WILL FOLLOW the same process used for creating the controllers in the previous chapter
to create a comment . js controller and commentRow. js controller. The comment . xml view
will hold a Titanium.UI.TableView, which will be a list of comments. The Titanium.
UI.TableViewRow will be represented as the commentRow.xml views. This pattern is the
exact same one you used in the previous chapter, so [will move quickly through the content.

Creating the Comment Table View Layout

You'll first create the comment . xml view file, similar in layout to the feed.xml with some
different button functionality. Here, I have added a newCommentButton, which will be used
for creating new comments. You connect that functionality to the controller later in the chap-
ter, but for now [am focusing on listing the comments associated with the photo selected.

I also have created the commentTable that will hold the list of comments added to the
application and associated it with the currentPhoto.

<Alloy>
<Window id="commentWindow" title="Comments">
<RightNavButtons>
<Button id="newCommentButton"s>Comment</Buttons
</RightNavButton>
<TableView id="commentTable"></TableViews>
</Window>
</Alloy>

Since you are building a cross-platform solution, you need to account for the differences in
the Android solution. This code will work fine on i0S, but there are a few changes needed to
support Android.

www.it-ebooks.info

http://www.it-ebooks.info/

136 BUILDING CROSS-PLATFORM APPS USING TITANIUM

First, you do not have the concept of navigation buttons on Android so you will need to add
the platform identifier for iOS to make sure the button code is included only when building
for that platform. The next change is to add an event listener when the window opens so the
application can construct the menu and title bar for Android.

The modified comment . xm1 file with cross-platform support should look similar to the fol-
lowing code listing:

<Alloy>
<Window id="commentWindow" title="Comments" onOpen="doOpen">
<RightNavButton platform="ios">
<Button id="newCommentButton"s>Comment</Buttons>
</RightNavButton>
<TableView id="commentTable"></TableView>
</Window>
</Alloy>

Rendering the Rows Using a Different
View and Controller

Along with the comment . xm1 view, you will use the commentRow . xm1 view to separate out
the user interface and the functionality associated with the rows in the table.

In the row, you will show the user profile photo for the person who created the comment, the
username and the timestamp of the comment, and finally the comment text.

You also keep track of the comment model ID so when you need to manipulate the model,
you can retrieve the ID from the row object.

The following code is for the commentRow . xm1 view file, which is the XML representation of
each row that you will render in the table.

<Alloy>
<TableViewRow id="row" comment_id="">
<View class="container"s>
<ImageView id="avatar" />
<View class="textContainer"s>
<View class="userInfo" layout="horizontal"s
<Label id="userName" />
<Label id="date" />
</View>
<Label id="comment"s></Label>
</View>

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS 137

</Views>
</TableViewRow>
</Alloy>

Styling the Views to Match the Mockups

You have not done much styling at this point in the book, but there is a need to do some
layout here to get the rows to render the way they were designed in the original mockups.
The way you apply styles in the view files is through the commentRow . tss style file and you
use the .CSS format to specify classes for the elements and also apply specific styles to the
elements.

"Hrow" : {
selectedBackgroundColor : 'transparent',
width : Ti.UI.FILL,
height : Ti.UI.SIZE,
horizontalWrap: false

b

".container": {
backgroundColor : 'white',
width : Ti.UI.FILL,
height : Ti.UI.SIZE,
top : O,
layout : 'horizontal',
horizontalWrap: false,

I

".textContainer": ({
backgroundColor : 'white',
width : Ti.UI.FILL,
height : Ti.UI.SIZE,
top : O,
bottom : '5dp',
layout : 'vertical',

b

"#avatar" : |
top : 'Gdp',
left : '5dp',
width : '38dp’',
height : '38dp'

b

"#comment" : {
top : '2dp',
left : '5dp',
textAlign : 'left',

www.it-ebooks.info

http://www.it-ebooks.info/

138 BUILDING CROSS-PLATEORM APPS USING TITANIUM

height : Ti.UI.SIZE,
width : Ti.UI.FILL,

font : {
fontSize : '14dp'
}
I
"#comment [platform=android] " : {

width : Ti.UI.FILL,
height : Ti.UI.SIZE,

bottom : '2dp',
textAlign : 'left',
font : {
fontSize : '14dp'
}
b
" userInfo" : {

width : Ti.UI.FILL,
height : Ti.UI.SIZE,
horizontalWrap : false,

bottom : '2dp',
b
'#userName' : {
top : '5dp',
left : 'sdp',

width : Ti.UI.SIZE,
height : Ti.UI.SIZE,

font : {
fontSize : '1l4dp',
fontWeight : 'bold!’
b
b
"#date' : {
top : 'Gdp',

right : '5dp',
width : Ti.UI.FILL,
height : Ti.UI.SIZE,

textAlign : 'right',
font : {
fontSize : 'l4dp’',

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS

Figure 6-1 shows a more detailed mockup of each row, and you can see how the classes and
styles are applied to the elements to give the desired outcome. Also notice the use of the
platform-specific identifier on the #comment styling entry. Yon can make platform-specific
styling selections on specific objects or classes using this approach.

.container

.textContainer

=
@
@
=
S
o
3
)
o
o
=
@

Avatar

__

FIGURE 6-1: Design mockup of how the rows are laid out.

Adding Logic to the Controllers

You'll now start to look at the code from the controllers that will pull all this together. The
comment . js controller will follow a simple pattern, whereby you will have a function for
loading the items into the list, a function for adding a comment to the list, a function for
deleting a comment from the list, and of course a function to initialize the view. Remember
the objective here is to modularize the business logic into the controllers so that the control-
ler is getting data from models and passing it on to views to render.

Calling the New Controller from feed.js

The first thing you will need to do is pass in some parameters to the comment . js controller
when it is created so you know which photo you are working with and where you came from,
that is, which controller launched the comment controller. You could create global variables
to track this information, but it’s better to minimize the use of global variables as a practice
and instead pass parameters containing the appropriate information.

So when you create a comment . js controller it will look like the following code; the model
and the current controller are passed in as an object parameter. This is how the current con-
troller is passed in by using the $ object. The model object is a local variable representing the
photo the user is attempting to create a comment for or view the list of comments associated
with it.

The following code is how the new comment controller will be created when called from
feed.js:

www.it-ebooks.info

139

http://www.it-ebooks.info/

140

BUILDING CROSS-PLATFORM APPS USING TITANIUM

var commentController = Alloy.createController ("comment", {
photo : model,
parentController : $

3K

Coding the comment.js Controller

Inside the comment . j s controller file you will save the parameters as scope variables, with
better names to make the code self-commenting,.

// Get the parameters passed into the controller

var parameters = arguments[0] || {};
var currentPhoto = parameters.photo || {};
var parentController = parameters.parentController || {};

The first thing you need to do is load the comments into the view when the controller is first
opened. You can accomplish this through the use of two functions. First, you'll create an
initialization function which will be exposed so it can be called to initialize or re-initialized
the controller when needed, at this point, the only statement in the $.initialize func-
tion will be a call to another function, loadComments. In 1loadComments, you will query
Appcelerator Cloud Services (ACS) to get a list of all of the comments associated with the
currentPhoto object passed into the controller.

At this point your comment . js controller should look similar to this:

var parameters = arguments[0] || {};
var currentPhoto = parameters.photo || {};
var parentController = parameters.parentController || {};

function loadComments(photo id)

}

$.initialize = function() {
loadComments () ;

}i

Cross-Platform Support in Comment View

When you created the comment view, there were platform-specific components added, spe-
cifically the right navigation button that is used to add a new comment. Since the concept of
the right navigation button is specific to iOS, you will need an alternative approach for pro-
viding that functionality on Android.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS

On the window open event, you will check for Android and if so, you create the actionBar
from the window’s activity and associate the menuItem for a new comment to the

actionBar.
The code for the doOpen function is listed next and should be added to comment . js:

function doOpen() {
if (OS_ANDROID) {
var activity = $.getView() .activity;
var actionBar = activity.actionBar;

activity.onCreateOptionsMenu = function(event) {

if (actionBar)
actionBar.displayHomeAsUp = true;
actionBar.onHomeIconItemSelected = function() {
$S.getView() .close() ;
bi
} else {
alert ("No Action Bar Found") ;

// add the button/menu to the titlebar

var menultem = _event.menu.add ({
title : "New Comment",
showAsAction : Ti.Android.SHOW AS ACTION ALWAYS,
icon : Ti.Android.R.drawable.ic_menu edit

3N

// event listener
menultem.addEventListener ("click", function(e) {
handleNewCommentButtonClicked () ;

3N

}i

If you notice in this code there is a call to a function named handleNewCommentButton
Clicked. This function will be called from the menu selection and also the newCommentBtn,
which is displayed on iOS only. You can add the iOS event listener and the function stub
now; the code for the function will be presented later in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

142

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Here is the event listener and function stub added to comment . js:

0S_IOS && $.newCommentButton.addEventListener ("click",
handleNewCommentButtonClicked) ;

function handleNewCommentButtonClicked(event) {
// FILLED OUT LATER IN CHAPTER

}

Coding the commentRow Controller

You will be using the commentRow. js controller to generate each of the rows that are ren-
dered in the tableview. The controller code will simply take the model’s attributes and add
them to specific view objects for display.

At this point you should add the following code to the commentRow. js controller file to
handle the parameters that are passed in when the controller is created. There is one argu-
ment required and that is the model representing the comment that will be rendered by this
instance of the controller.

You also need to render some information about the user in the comment row, so to make
processing the user object easier, you will add a new variable that represents the user, which
is an attribute of the photo model passed in.

var model = arguments[0] || {};
var user = model.attributes.user;

If you recall how you queried Appcelerator Cloud Services in the previous chapter, then all is
good because you will follow the exact same pattern thanks to the ACS sync adapter and the
model you will create to support comments.

Adding Models and Collections

for Querying Comments

You need to open the model directory and create a new file called comment . js; add the fol-
lowing content to the file. The only major changes from the default model. js file are the
inclusion of the type and collect name properties.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS

exports.definition = {
config : {
"adapter" :
n type n : n acs n ,
"collection name" : "reviews"

b

extendModel : function (Model) {
_.extend (Model.prototype, {});
return Model;

b

extendCollection : function(Collection) {
_.extend(Collection.prototype, {});
return Collection;

b

For this model, you will be using the Appcelerator Cloud Service object called Reviews. You
can get additional information about the object here: http://cloud.appcelerator.
com/docs/api/vl/reviews/info.

You are going to go back to the Appcelerator Cloud Services Alloy sync adapter and add some
additional code to support working with the new comment model; you will start with the
Sync method in the acs. js adapter. Add the processACSComments method to the func-
tion so you can work with review objects in the adapter. This example has added an addi-
tional condition to the if statement that will check the object name for the model and
then branch, in this case, to the processACSComments function.

function Sync(method, model, options) { debugger;
var object name = model.config.adapter.collection name;

if (object name === "photos") ({
processACSPhotos (model, method, opts);

} else if (object name === "users") ({
processACSUsers (model, method, opts);

} else if (object name === "reviews") ({
processACSComments (model, method, opts);

www.it-ebooks.info

143

http://cloud.appcelerator.com/docs/api/v1/reviews/info
http://cloud.appcelerator.com/docs/api/v1/reviews/info
http://www.it-ebooks.info/

144 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Now you have a function that you will use to work with the comment model. You have access
to the ACS library APIs, which make interacting with these objects pretty straightforward
and the abstraction of the model objects through Alloy and Backbone provide a clean consis-
tent interface.

To get all of the reviews/comments for the photo, you'll use the query method; see this
documentation for a complete listing of the parameters for the method: http://cloud.
appcelerator.com/docs/api/vl/reviews/query.

Inside the processACSComment s function, you have a switch statement that maps to the
REST functions create, update, read, and delete, so all you have to do is add the appropriate
ACS library calls and return the objects the same way you did in the previous chapter when
working with photos.

function processACSComments (model, method, opts)

switch (method) ({
case "create'":
break;
case "read":
Cloud.Reviews.query ((opts.data || {}), function(e) ({
if (e.success) ({
model .meta = e.meta;
if (e.reviews.length === 1) {
opts.success && opts.success(e.reviews[0]) ;
} else {
pts.success && opts.success (e.reviews)
}
model.trigger ("fetch") ;
return;
} else {
Ti.API.error ("Reviews.query " + e.message) ;
opts.error && opts.error (e.message || e);

D

break;
case "update":
case "delete":

break;

www.it-ebooks.info

http://cloud.appcelerator.com/docs/api/v1/reviews/query
http://cloud.appcelerator.com/docs/api/v1/reviews/query
http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS

You are using the Cloud.Reviews.query method to get all of the comments. You pass
parameters into the query using opts.data and the method will return the results or an
error message if appropriate. You then will need to add the proper callback function in the
comment . js controller to handle the results and then add them to the tableView you cre-
ated in the previous section.

You will use the same approach for adding the functionality to create a single comment to
associate with the photo and for deleting a comment that was previously associated with the
photo. The Cloud.Reviews object has the corresponding methods of Cloud.Reviews.
create and Cloud.Reviews.remove.

When you create a comment, you will utilize all of the object properties specified in the back-
bone model as the parameters needed for the Cloud.reviews.create method. See
http://cloud.appcelerator.com/docs/api/vl/reviews/create.

Add the following code to the switch statement in the method processACSComments to
handle the call to the adapter and create a new comment in the application:

case "create":
var params = model.toJSON() ;

Cloud.Reviews.create (params, function(e) {
if (e.success) {
model.meta = e.meta;
opts.success && opts.success (e.reviews[0]) ;
model.trigger ("fetch") ;

} else {
Ti.API.error ("Comments.create " + e.message);
opts.error && opts.error (e.message || e);
P
break;

When you delete a comment, you will need a comment/review ID and the photo_id as the
parameters for the Cloud. reviews . remove method. See http://cloud.appcelerator.
com/docs/api/vl/reviews/delete.

Add the following code to the switch statement in the method processACSComments to
handle the call to the adapter and delete an existing comment in the application.

case "delete":
var params = {};

www.it-ebooks.info

145

http://cloud.appcelerator.com/docs/api/v1/reviews/create
http://cloud.appcelerator.com/docs/api/v1/reviews/delete
http://cloud.appcelerator.com/docs/api/v1/reviews/delete
http://www.it-ebooks.info/

146

BUILDING CROSS-PLATFORM APPS USING TITANIUM

// look for the review id in opts or on model
params.review id = model.id || (opts.data && opts.data.id);

// get the id of the associated photo
params.photo _id = opts.data && opts.data.photo id;

Cloud.Reviews.remove (params, function (e) {
if (e.success) {
model .meta = e.meta;
opts.success && opts.success (model.attributes) ;
model.trigger ("fetch") ;
return;

}

Ti.API.error (e);
opts.error && opts.error (e.error && e.message || e);

3K

break;

Finishing the Comment Controllers

So back in the comment . js controller file, you will set up the collection to use throughout
the controller and then add some logic to the 1oadComments method, which when called
will create the list of comments to be displayed in the view.

At the top of the comment . js file, add the following statement to create an instance of the
comments collection to be used throughout the controller:

var comments = Alloy.Collections.instance ("Comment") ;

Next, go to the loadComments function to add the logic. You add objects to the collection
by querying Appcelerator Cloud Services using the current Photo object’s ID property.

You create the parameters for the query using currentPhoto. id, specify that you want
the query to return the first 100 comments by setting the per page property, and finally
order the comments by the creation date, which you do by setting the order property.

var params = {
photo_id : currentPhoto.id,
order : '-created at',
per page : 100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS

You will be using the empty collection object comments, and the parameters are set for the
query, so all that is left to do is call the fetch method on the comment collection object.

Add the following code to the 1oadComment s function immediately after the previous lines
of code:

var rows = [];

comments. fetch ({
data : params,
success : function(model, response) {
comments.each (function (comment) {
var commentRow = Alloy.createController ("commentRow",
comment) ;
rows .push (commentRow.getView()) ;
P
// set the table rows
$.commentTable.data = rows;
b
error : function(error) {
alert ('Error loading comments ' + e.message);
Ti.API.error (JSON.stringify (error)) ;

3N

The commentRow Controller

In the comment.js controller file, you can see where the rows are being created for the
$.commentTable by creating a new commentRow. js controller for each of the items from
the collection and using the primary view from the commentRow. js as the row object. If
you take a look at the code from the commentRow. js controller, you can see a few things
going on there as the code pulls the properties from the comment object and constructs the
row for the comment, based on the model object passed in as a parameter.

When the commentRow. js controller is created by the calling function, it is passed the model
object as a parameter. You will access the model properties by using the model .attributes
property. You will also need to work with the user object associated with the model variable and
to make the code easier to read, you can create a variable called user and set its value to reflect
the properties associated with the comment creator/user. The commentRow controller code is
made up of statements to get properties from objects and set properties on objects in the
commentRow . xml view, including the ID of the model that’s not displayed but saved in the
attribute $.row.comment_id. This is done so when the application responds to click events
on rows, it can determine the ID of the object by looking at the comment_id property.

www.it-ebooks.info

147

http://www.it-ebooks.info/

148

BUILDING CROSS-PLATFORM APPS USING TITANIUM

One of the properties that will be rendered in the view is the date the comment was created.
In order to properly format the date in the view, you will need to include a third-party library,
moment j s, which is distributed with Appcelerator Alloy. To use this library in this controller,
you will need to include another requires statement at the top of commentRow. js.

var moment = require ('alloy/moment') ;

Add the following code to commentRow.js to display the formatted information for the
model provided as a parameter:

if (user.photo && user.photo.urls) ({
$.avatar.image = user.photo.urls.square 75 ||
user.photo.urls.thumb 100 || user.photo.urls.original;

}

$.comment .text = model.attributes.content;

// check for first name last name...
$.userName.text = (user.first name || "") + " " + (user.last name

|| nwy;

// 1if no name then use the username

$.userName.text = $.userName.text.trim().length !== 0 ?
$.userName.text.trim() : user.username;

$.date.text = moment (model.attributes.created at) .fromNow () ;

// save the model id for use later
$.row.comment id = model.id || '';

Connecting the Dots . . . Showing
the Comment List

Now that you have created the new comment section of the application, you need to provide
the method for the user to get access to it. You will do this by connecting the comment
button to an event listener that will trigger the whole process when clicked.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS

Back to the feed and feedRow Controllers

First you need to update the feed.js controller so when the user clicks on the comment
Button, all comments associated with the selected image in the feed . xml view will be dis-
played. Since you are following the Appcelerator Alloy pattern, you will instantiate a new
controller comment . js and then render the comment . xm1 view of that controller.

If you review the code for the feedRow.xml, you can see the commentButton added to
each row and can see the row_id attribute, which is set to the ID of the photo displayed in
this row.

<!-- file: feedRow.xml -->
<Alloy>
<TableViewRow id="row" row_id="">

<View class="container"s
<Label id="titleLabel"s></Label>
<View id="imageContainer"s>
<ImageView id="image"></ImageView>
</Views
<View id="buttonContainer"s
<Button id="commentButton"s>Comment</Buttons>
<Button id="shareButton">Share</Button>
</Views
</View>
</TableViewRow>
</Alloy>

Here is the line in feedRow. js controller where the model ID is set.

$.row.row_id = model.id || '';

In Appcelerator Alloy, events bubble up by default. What this means is that the application
can listen for click events at the Titanium.UI.TableView level, on the feedTable cre-
ated in the feed. js controller, and then determine if the click was done on a specific button
from the feedRow.xml view.

To do that, create an event listener on the whole table and have a function that is called for
each click on the table. Add the following code to the beginning of the feed.js controller
file.

$.feedTable.addEventListener ("click", processTableClicks) ;

www.it-ebooks.info

149

http://www.it-ebooks.info/

150 BUILDING CROSS-PLATFORM APPS USING TITANIUM

When the application gets a click event, an event parameter that contains information about
the event and the source object of the event is passed as a parameter. In this case, you are
looking for a click on the commentButton.

In the processTableClicks function, the application branches on the ID of the object
that was clicked, utilizing the object’s ID to determine if it was the commentButton or the
shareButton. The function handleCommentButtonClicked is added to the feed.js
controller file to respond to clicks on the commentButton and create the controller for ren-
dering the comment view.

The following code should be added to the feed. js controller:

function processTableClicks(event) {
if (_event.source.id === "commentButton") {
handleCommentButtonClicked (event) ;
} else if (_event.source.id === "shareButton") ({
alert ('Will do this later!!');

function handleCommentButtonClicked(event) {
var collection = Alloy.Collections.instance ("Photo") ;
var model = collection.get(event.row.row_ id) ;

var controller = Alloy.createController ("comment", {
photo : model,
parentController : $

I3

// initialize the data in the view, load content
controller.initialize () ;

// open the view
Alloy.Globals.openCurrentTabWindow (controller.getView()) ;

The presence of Alloy.Globals is new in the application; it is a place to store global func-
tions or properties without polluting the global namespace. In this example you will be
adding the function openCurrentTabWindow to the application and you want global
access to it.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS

Open index.js controller and add the following function to the bottom of the file.

Alloy.Globals.openCurrentTabWindow = function(window) {
$.tabGroup.activeTab.open(window) ;

bi

So now all of the functions are in place to detect the click on the commentButton, create the
new controller, and render the table view to list the comments. If you compile and run the code
the list should display fine, but with no comments (see Figures 6-2 and 6-3). The next step is to
create the functionality for adding comments so you will have something to display in the view.

Carrier 9:06 PM

< Feed Comments Comment

FIGURE 6-2: Comments list view in iOS.

www.it-ebooks.info

151

http://www.it-ebooks.info/

152

BUILDING CROSS-PLATFORM APPS USING TITANIUM

L, Comments

S O =

FIGURE 6-3: Comments list view in Android.

Adding a New Comment to a Photo

The next step is to create the view and the associated controller for adding new comments.
This controller will be called from the comment . js controller that you created previously
and will be rendered in a completely new window.

In this section, there will be some cross-platform issues you need to address in the applica-
tion to provide platform-specific functionality; but it will still be much easier than writing
two separate code bases.

Creating a New Comment Controller and View

Right-click on the project and select New = Controller. Name the file comment Input. This
command will create the controller, view, and style file to support the object you just created.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS 153

The comment input view is quite simple; you need a Save button, a Cancel button, and a text
field to hold the contents; the view is laid out as follows.

<!-- file: commentInput.xml -->
<Alloy>
<NavigationWindow id="navWindow" platform="ios">
<Window id="mainWindow" title="New Comment" onOpen="doOpen" >
<LeftNavButton >
<Button id="cancelButton">Cancel</Buttons>
</LeftNavButtons>
<RightNavButton>
<Button id="saveButton"s>Save</Button>
</RightNavButtons>
<TextArea id="commentContent"/>
</Window>
</NavigationWindow>

<!-- ANDROID WINDOW -->
<Window id="mainWindow" title="New Comment" onOpen="doOpen"
platform="android">
<ScrollViews
<TextArea id="commentContent"/>
</ScrollViews>
</Window>
</Alloy>

You can see that there are platform attributes added to indicate that the right and left naviga-
tion buttons are set on the iPhone only. There is also an event listener called onOpen that is
specified in the view file. This event listener will be created in commonInput .js and will set
up the menu bar and buttons for the Android version of the application.

You need to do some basic styling here on this view to get the textArea to appear in the
proper location on the screen and to ensure you get the appropriate keyboard behavior. There
are also some cross platform differences that you will account for in the layout of the window.

The following code is added to commentInput.tss to achieve the desired results in the
user interface on iOS:

// file: commentInput.tss

"#commentContent" : {
borderWidth: 2,
borderColor: '#bbb',
borderRadius: 5,
top:'5dp!',

www.it-ebooks.info

http://www.it-ebooks.info/

154

BUILDING CROSS-PLATFORM APPS USING TITANIUM

left:'5dp',
right:'5dp"',
bottom: '240dp"',
color : 'black',
font: {
fontSize:'ledp'
b
suppressReturn:false,
autocapitalization: Ti.UI. TEXT AUTOCAPITALIZATION_NONE,
autocorrect: true

For Android, to get the keyboard to appear properly, you will need to put the textAreaina
ScrollView so the ScrollView object and the TextArea object need additional proper-
ties assigned in the . tss file.

'#commentContent [platform=android] ' : {
height:'240dp"',

I

'ScrollvView[platform=android]' : {
contentHeight:'240dp',

Properties for Ti.UI.TextArea can be found here: http://docs.appcelerator.
com/titanium/latest/#!/api/Titanium.UI.TextArea.

Most of these properties are pretty self-explanatory, but I do want to mention the
suppressReturn: false setting. [t allows the user to enter newlines in the textArea. If
you did not set this property on the textArea and the user pressed the Return key, the
keyboard would close, which is not the desired behavior.

Adding Code to the Comment Input Controller

The controller has to handle a few tricky tasks beyond what you have done in the past. First,
you need to get the parameters from the creation of the controller object, which is done by
parsing the arguments [0] object provided by framework. This is returning a JavaScript
hash that is then assigned to the local variable parameters. The following code should be
added to the beginning of comment Input.js.

The first two parameters’ purposes should be clear; they represent the photo to associate the
comment to and the parentController is the controller that instantiated this controller.
The last parameter assigned to the local variable callbackFunction is the function called
when this controller is closing; it is discussed in more detail later.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.UI.TextArea
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.UI.TextArea
http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS

// file: commentInput.js

var parameters = arguments[0] || {};

var currentPhoto = parameters.photo || {};

var parentController = parameters.parentController || {};
var callbackFunction = parameters.callback || null;

You need to add the event listeners for the two buttons you have created in the window; one
for when the user saves the message, called saveButton and one for when the user cancels
the action, called cancelButton. Since these buttons are included in the user interface only
when the application is built for iOS devices, the code checks for the device’s OS to be iOS
before adding the event listeners to these buttons.

OS IOS && $.saveButton.addEventListener("click",
handleButtonClicked) ;

OS IOS && $.cancelButton.addEventListener("click",
handleButtonClicked) ;

You also need to add the function for the open window event listener called doOpen. In this
event listener, you set the focus of the window to the commentContent, which is the
textArea added to the window. Setting the focus of the window to a textArea will force
the device to display the keyboard when the window is shown.

On Android devices, the event listener has more duties; it will add a menuItem to the
actionBar to save comments when selected. In the event listener you will also connect the
menu selection to the same event listener that the saveButton on iOS responds to.

When you are working with a window directly and not with the TabGroup, you access the
actionBar through the current window’s activity and not through the TabGroup activity.

The doOpen function does pretty much what I said; it just sets the focus of the comment
input window.

function doOpen() {
if (OS_ANDROID) {

$.getView() .activity.onCreateOptionsMenu=function(event) {

var activity = $.getView() .activity;
var actionBar = $.getView() .activity.actionBar;

if (actionBar)

actionBar.displayHomeAsUp = true;
actionBar.onHomeIconItemSelected = function|() {

www.it-ebooks.info

155

http://www.it-ebooks.info/

156 BUILDING CROSS-PLATFORM APPS USING TITANIUM

$.getView() .close() ;
Vi
} else {
alert ("No Action Bar Found") ;

// add the button to the titlebar
var mItemSave = _event.menu.add ({
id : "saveButton",
title : "Save Comment",
showAsAction : Ti.Android.SHOW_AS_ACTION_ALWAYS,
icon : Ti.Android.R.drawable.ic_menu save

3K

// add save menu item

mItemSave.addEventListener ("click", function(event) {
_event.source.id = "saveButton";
handleButtonClicked(_event) ;

3K

var mItemCancel = _event.menu.add ({
id : "cancelButton",
title : "Cancel",
showAsAction : Ti.Android.SHOW_AS_ACTION_ALWAYS,
icon
Ti.Android.R.drawable.ic_menu close clear cancel

I3F;

// add cancel menu item
mItemCancel.addEventListener ("click", function(event)
_event.source.id = "cancelButton";
handleButtonClicked(event) ;
1
}i

// set focus to the text input field, but

// use set time out to give window time to draw

setTimeout (function() {
$.commentContent . focus () ;

}, 250);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS

The function handleButtonClicked supports the event for both buttons in the window
since the behavior is very similar. If the saveButton is clicked, you call the callback
Function with the appropriate parameters and then close the window. The returnParams
object is set with the content from the textArea and a success property is set to true or
false to indicate if the user wanted to cancel the comment input action.

// file: commentInput.js
function handleButtonClicked(event) {
// set default to false
var returnParams = {
success : false,
content : null

Vi

// if saved, then set properties

if (_event.source.id === "saveButton") {
returnParams = {
success : true,
content : $.commentContent.value

Vi

// return to comment.js controller to add new comment
callbackFunction && callbackFunction (returnParams) ;

Now that the new controller and view are set up and allow the user to add comments to the
photos, you can return to the comment . j s controller to pull it all together.

Back to the Comment.js Controller

First, you will add the code for the event listener handler, which follows the familiar pattern
for creating a controller and passing in some parameters. Remember this function will be
called when either the button is clicked or the menu item is selected on an Android device.

// file: comment.js
function handleNewCommentButtonClicked(event) {
var navWin;
var inputController = Alloy.createController ("commentInput", {
photo : currentPhoto,
parentController : $,
callback : function(event) {

www.it-ebooks.info

157

http://www.it-ebooks.info/

158

BUILDING CROSS-PLATFORM APPS USING TITANIUM

inputController.getView() .close() ;
inputCallback(_event) ;

}
)

// open the window
inputController.getView () .open() ;

The callback from the comment Input . js controller will create the new comment if data is
returned successfully from the controller; otherwise an error alert is displayed. As you can
see in this function, the inputCallback function is passed as a parameter into the
comment Input controller. The code for inputCallback should be added to the comment . js
file after the handleNewCommentButtonClicked function.

See the code for the inputCallback function:

// file: comment.js
function inputCallback(_event) {
if (_event.success) {
addComment (_event.content) ;
} else {
alert ("No Comment Added") ;

Saving the Comment and Updating the Table

If a successful response is received from inputCallback, then you create a new comment for
the currentPhoto by calling a new function called addComment. Using the comment . js
model created earlier in the chapter and the data returned from the controller to create a new
comment model, you can begin to structure the function.

The addComment function in the comment . js controller follows the same pattern for cre-
ating a model object and adding it to a table view as was used when creating the photo object
in the previous chapter. The function will make a call to the ACS sync adapter using the
backbonejs save method, and you will then add the row to the $.commentTable using
the commentRow. js controller discussed earlier in the chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS

The code for the function is as follows:

function addComment (_content) {
var comment = Alloy.createModel ('Comment') ;

var params = {
photo_id : currentPhoto.id,
content : _content,

allow duplicate : 1

}i

comment .save (params, {
success : function(model, _response) {
Ti.API.info('success: ' + model.toJSON());
var row = Alloy.createController ("commentRow", model) ;

// add the controller view, which is a row to the table
if ($.commentTable.getData().length === 0) {
$.commentTable.setData ([]) ;

$.commentTable.appendRow (row.getView (), true);
} else {

$.commentTable.insertRowBefore (0, row.getView (),

true) ;

b

error : function(e) {
Ti.API.error('error: ' + e.message);
alert ('Error saving new comment ' + e.message) ;

3N
¥

The code does the same check of the table to see if it is empty so the comment can be added
to the top of the table or appended to the table.

The parameter photo_id is set by the currentPhoto object passed into the controller
when it is instantiated, as discussed earlier in the chapter. The text for the comment is set in
the _content parameter and is returned by the comment Inputjs controller.. By setting
allow duplicate, you enable users to create more than one comment for the photo.
Additional information on the parameters for saving a comment can be found at http://
cloud.appcelerator.com/docs/api/vl/reviews/create.

www.it-ebooks.info

159

http://cloud.appcelerator.com/docs/api/v1/reviews/create
http://cloud.appcelerator.com/docs/api/v1/reviews/create
http://www.it-ebooks.info/

160

BUILDING CROSS-PLATFORM APPS USING TITANIUM

At this point, you should be able to add comments to the photos in your application. The
comments should be associated with the photos. When appropriate, clicking on the com-
ment button in the feed view should cause the list of comments to appear and be ordered by
date. See Figures 6-4 and 6-5.

Carrier 2:29 PM

Cancel New Comment

FIGURE 6-4: You can now add comments, as shown in this iOS view.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS 161

(34 New Comment B X

The \ Thanks WV
i 24 ®3N B4R BN E6d 74§81 9N RO

X B K R. B B B §B B
e} 4 el BEl B B NEN BN leR P

{ J

als'dflghnlikh

+ Zixle ¥ b ln m <=

Sym i..-l.‘;-r English(US) - ¢_'

FIGURE 6-5: The Android view of the New Comment feature.

Figures 6-6 and 6-7 show the application with some sample comments entered into it.

www.it-ebooks.info

http://www.it-ebooks.info/

162 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Carrier 3:24 PM (-

< Feed Comments Comment

Info Account 15 hours ago
this is a long comment that should wrap
around things here

Info Account 15 hours ago
iphone comment

FIGURE 6-6: The Comments list view in iOS.

(f&), Comments

Info Account 15 hours agqg
this is a long comment that should wrap around
things here

Info Account 15 hours agg
iphone comment

FIGURE 6-7: The Comments list view in Android.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS

Deleting Comments

Now that you have completed the process of adding a comment to the photo, you will add func-
tionality to delete a comment. This approach will allow the users to delete only the comments
that they created. This solution will be implemented on iOS such that the user will swipe the
table row to display the ability to delete the item and then make the ACS API call to delete the
comment from the system. The Android solution will be to respond to a longpress event on
the tableRow.

For this functionality to work, there needs to be some initial setup code added to the
comment . js controller. First update the table and set the editable property to true; this
will allow the swipe event on the table row to display the delete button.

Next add event listeners for the 1ongpress event on Android and the delete event on the
table for supporting iOS.

The setup code to be added to the top of comment . j s is listed here; you should add the code
near the other event listeners:

$.commentTable.addEventListener ("delete", handleDeleteRow) ;
$.commentTable.addEventListener ("longpress", handleDeleteRow) ;
$.commentTable.editable = true;

Now in the event handler function called handleDeleteRow, you are provided information
on the row clicked from the event parameter. From there you can get the commentId_
attribute that was added to the tableRow. This ID then can be used to get the selected
model from the Comment collection instance. The model object’s destroy function is called
with the appropriate parameters—the currentPhoto. id from the arguments passed into
the controller and the model . id from the comment collection. If the delete is unsuccessful
an alert is displayed. In both cases, the table is completely reloaded to ensure the proper
models are displayed for the user.

The code for handleDeleteRow is listed next and should be added to the comment .qjs
controller anywhere after the event handlers are added to the file.

function handleDeleteRow(event) {
var collection = Alloy.Collections.instance ("Comment") ;
var model = collection.get(event.row.comment id) ;

if (!model) {
alert ("Could not find selected comment");
return;

} else {

www.it-ebooks.info

163

http://www.it-ebooks.info/

164 BUILDING CROSS-PLATFORM APPS USING TITANIUM

if (OS_ANDROID) {
var optionAlert = Titanium‘UI.createAlertDialog({

title : 'Alert’',
message : 'Are You Sure You Want to Delete the Comment',
buttonNames : ['Yes', 'No']

3K

optionAlert.addEventListener ('click', function(e) {
if (e.index == 0) {
deleteComment (model) ;
}
P

optionAlert.show() ;
} else {
deleteComment (model) ;

handleDeleteRow calls deleteComment where the ACS adapter is used to delete the
comment from the system. The code for deleteCommented is listed here:

function deleteComment (_comment) {
__comment .destroy ({

data : {
photo_id : currentPhoto.id, // comment on
id : _comment.id // id of the comment object

b

success : function(model, _response) {
loadComments (null) ;

b

error : function(e) {
Ti.API.error('error: ' + _e.message);
alert ("Error deleting comment") ;
loadComments (null) ;

3K

Figures 6-8 and 6-9 show what the users will see when they attempt to delete a comment in

the application.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 INTEGRATING COMMENTS 165

Carrier & 2:30 PM -

< Feed Comments Comment

hccount 14 hours ago
b a long comment that should wrap Delete
d things here

Info Account 14 hours ago
iphone comment

Settings

FIGURE 6-8: Deleting a comment in iOS.

Are You Sure You Want to Delete

the Comment

No

FIGURE 6-9: The comments delete alert from using the long press in Android.

www.it-ebooks.info

http://www.it-ebooks.info/

166

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Summary
In this chapter you extended the functionality of the ACS sync adapter to support an addi-
tional model called comments, which is important since this pattern will be continued

through the book.

The benefits of cross-platform development were demonstrated by how you are able to pro-
vide the platform-specific user experience of the actionBar on Android and the navigation
group title bar pattern on i0OS all from the same code base. This approach allows for the
development of solutions that do not have a one-size-fits-all approach to interface design.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

Integrating User Accounts with
Appcelerator Cloud Services

TO INTEGRATE USER accounts into the mobile application, you will use the Appcelerator
Cloud Service user object discussed in Chapter 5 and leverage the built-in social medial func-
tionality from Appcelerator’s Facebook module and Appcelerator Cloud Service’s ability to
link a user object to Facebook credentials.

After you create the user account, you will be able to log in with the user and update the
user’s information in the Users Settings page, which is covered in Chapter 11.

Adding the Login User Interface

You need to create a few more controller view combinations to support the three new
screens—the User Choice, Create User Account, and Login screens. For this application you
will integrate all of the screens into one view called the login view, which will have an associ-
ated controller to interact with the application.

You create the login controller the same as you have created the previous controllers and
then open the login.xml view file associated with the controller you just created.

You will start off with the window object as the container for the remainder of the screen
elements, but in this case you will also add a Scrol1View to the window container. You are
adding the ScrollView to the container to help manage the user interface when the key-
board is displayed for the user to enter text into fields. What the Scrol1lview does is auto-
matically scroll the window contents so the text entry field is visible; this is a nice feature
when filling out forms in the mobile application.

www.it-ebooks.info

http://www.it-ebooks.info/

168

BUILDING CROSS-PLATFORM APPS USING TITANIUM

<Alloy>
<Window id="index" class="loginContainer" >
<ScrollvViews
<!-- main content for the screen goes here -->
</ScrollvViews
</Window>
</Alloy>

The views will be constructed by placing all of the objects into the container and hiding and
showing the proper container based on the action the users take. For example, when the user
clicks the login button, you will hide everything in the view and then fade in the controls and
user interface elements for the login action. You will use another one of the Appcelerator
built-in libraries called animations. js to easily integrate this functionality.

Next you start to add all the containers to the main loginContainer to create sections
that you will hide or show based on the user’s actions. You will add a label to display some
welcome text to the users so they are aware of the purpose of the page, and then you will add
the buttons that represent the choices that user had when launching the application

<View id='homeView'>
<Label id='welcomeText's></Label>
<View id="hvButtonContainer" >
<Button id="showCreateAccountBtn" title="Create Account"/>
<Button id="showLoginBtn" title="Login"/>
<Button id="showLoginFBBtn" title="Facebook Connect" />
</View>
</View>

You can see the use of view containers to help style and lay out the contents of the page. It is
a helpful pattern that you will find useful when trying to get the exact layout and spacing for
your user interface. See Figures 7-1 and 7-2.

// login.tss
'#homeView' : {
visible : true,
top : '90dp',
layout: 'vertical',
backgroundColor : 'transparent'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS

'#hvButtonContainer' :
top:'20dp',
width:'150",
height:Ti.UI.SIZE,
layout: 'vertical!

b

'#welcomeText' :{
text : "Welcome Text Goes Here For the App",
font: {

fontSize: '24dp’',
fontWeight : 'bold!

Carrier &

Welcome Text Goes Here
For the App

Create Account

Login

Facebook Connect

FIGURE 7-1: The initial home view in iOS.

www.it-ebooks.info

169

http://www.it-ebooks.info/

170

BUILDING CROSS-PLATFORM APPS USING TITANIUM

wileychapter5

Welcome Text Goes Here For the
App

S OO =

FIGURE 7-2: The initial home view in Android.

Next you add the container for the login view; here you will include the text fields for the
user to enter the username and password. You will set the password type as a property of the
password text field to have the password masked when the user enters the text; this code is
added to the 1login.xml file:

<View id='loginView'>
<Label id='loginText's></Label>
<View id="lvContainer" >
<TextField id="email" class='tfWrapper' />
<TextField id="password" class='tfWrapper' />

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS

<View class="centerHelper"s>
<Button id="doLoginBtn" title="Login" />
<Button id="cancellLoginBtn" title="Cancel" />
</Views>
<Button id="forgotPasswordBtn" title="Forgot Password" />
</Views>
</Views

You add a similar label as on the previous container so you can display some text to inform
the users of the purpose of the page. The last element you will add to the view container is a
button for the users to recover the password if they forget. See Figures 7-3 and 7-4.

// login.tss
"#loginview' :
visible : false,
width:Ti.UI.SIZE,
height:Ti.UI.SIZE,
top : '90dp',
layout:'vertical',
borderColor :'transparent'
b
"#loginText' :{
text : "Login Text Goes Here For the App",
font: {
fontSize: '24dp’,
fontWeight : 'bold!

I

"#lvContainer' :
top:'20dp',
width:'280dp"',
height:Ti.UI.SIZE,
layout: 'vertical',
borderColor :'orange',
borderWwidth :0

www.it-ebooks.info

171

http://www.it-ebooks.info/

172

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Carrier &

Login Text Goes Here For
the App

Login Cancel

Forgot Password

FIGURE 7-3: The app’s login view on iOS.

You can see the additional class attributes that are set on some of the fields; this is to provide
a basic level of styling and layout to the elements so you can see the functionality in action.

You see the consistent use of the ID attribute assigned to the elements because they are
required for accessing the objects from the application controllers when the user clicks on an
element or when you need to retrieve a value from a text field or application-level event.

The last section you need to add to the login.xml is for the account creation view; this is
where you enter the information required to create the user’s account in Appcelerator Cloud
Services. For this application, you need to provide first and last name and an email address.
The password must be entered twice for confirmation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS 173

f&) wileychapter5

Login Text Goes Here For the
App

oS O =

FIGURE 7-4: The app’s login view on Android.

<View id='createAcctView'>
<Label id='accountText's></Label>
<View id="cavContainer" >
<TextField id="acct_ fname" class='tfWrapper' />
<TextField id="acct_ lname" class='tfWrapper' />
<TextField id="acct_email" class='tfWrapper' />
<TextField id="acct_password" class='tfWrapper' />
<TextField id="acct_password_confirmation"
class='tfWrapper'/>
<View class="centerHelper">
<Button id="doCreateAcctBtn" title="Create Account"/>
<Button id="cancelCreateAcctBtn" title="Cancel" />
</Views>
</Views>
</Views>

www.it-ebooks.info

http://www.it-ebooks.info/

174

BUILDING CROSS-PLATFORM APPS USING TITANIUM

The associated changes to the login. tss file are necessary to lay the screens out properly
(see Figures 7-5 and 7-6):

// General Styles
'.tfWrapper': {
top: 'edp',
width: '260dp’',
height: '40dp’',
border: 1,
borderColor: 'gray'
b
'.centerHelper': {
top: 'l0dp',
height: Ti.UI.SIZE,
width: Ti.UI.SIZE,
layout: 'horizontal'
1
Scrollview: {
contentHeight: Ti.UI.SIZE,
contentWidth: Ti.UI.SIZE
1
TextField: {
autocapitalization: Ti.UI.TEXT AUTOCAPITALIZATION NONE,
borderStyle: Ti.UI.INPUT BORDERSTYLE NONE,
autocorrect: false,
top: '2dp',
left: '4dp',
bottom: '2dp',
right: '4dp',
paddingLeft: '4dp',
backgroundColor: 'white',
color : 'black',

b

// Default Button Style
"Button" : {
top: 'edp',
width: '120dp’,
height: '3edp’',
font: {
fontSize: '13dp'

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS

'#createAcctView' : {
visible: false,
width: Ti.UI.SIZE,
height: Ti.UI.SIZE,
top: '90dp',
layout: 'vertical',
backgroundColor: 'transparent'

b

'#accountText' :{
text: "Account Text Goes Here For the App",
font: {

fontSize: '24dp',
fontWeight: 'bold'
}
},
'#cavContainer' :
top: '20dp',
width: '280dp’',
height: Ti.UI.SIZE,
layout: 'vertical!',
'#acct_ fname' : {
hintText: 'first name’'
'#acct lname' : {
hintText: 'last name'

b

'#acct_email' : {

hintText: 'email address'
}I
'#acct_password' : {

passwordMask: true,
hintText: 'password'
'#acct password confirmation' : {
passwordMask: true,
hintText: 'password confirmation'
'#cancelCreateAcctBtn':
left: '1l0dp'

b

www.it-ebooks.info

175

http://www.it-ebooks.info/

176

BUILDING CROSS-PLATFORM APPS USING TITANIUM

'#doCreateAcctBtn': {
left: 'odp'

Carrier &

Account Text Goes Here For
the App

Create Account Cancel

FIGURE 7-5: The create account view on iOS.

You have created the structure of the user interface that is used to capture input from the
user to create an account, log in to an existing account, or log in to an account using your
Facebook credentials. The next step is to modify the user model created earlier in the book so
you can perform those functions using Appcelerator Cloud Services API calls. Remember
that the separation of the user interface from the model enables you to reuse this user model
that will support all of the mentioned functions in additional Alloy projects you create.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS 177

wileychapter5

Account Text Goes Here For the
App

first name

last name

password

password confirmation

[)
{)
[email address]
[)
[]

L= T s [e |

FIGURE 7-6: The create account view on Android.

Updating the User Model

In order to update the user model to support the account creation, you need to create an ability
to allow users to login and logout using account credentials and send a forgotten password email
when the user needs that hint to log in to the application. You will make additional updates later
in the chapter when integrating with Facebook, but for now this will all be Appcelerator Cloud
Services integrations. See http://docs.appcelerator.com/titanium/latest/#!/
api/Titanium.Cloud.Users.

The corresponding methods documented at this link will be integrated into the user model
so you can separate the model’s behavior directly into the object and not have it spread
through the entire application.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Users
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Users
http://www.it-ebooks.info/

178 BUILDING CROSS-PLATFORM APPS USING TITANIUM

User Create Account Method

You will go right below the area where the login function is and add the following code to the
user model for creating a new user account. This function is very similar to the one you will
find in the official Appcelerator Cloud Services documentation.

createAccount: function(userInfo, _callback) ({
var cloud = this.config.Cloud;
var TAP = Ti.App.Properties;

// bad data so return to caller
if (! _userInfo) {
_callback && _callback({
success : false,
model : null
P
} else {
cloud.Users.create(_userInfo, function(e) {
if (e.success) {
var user = e.users[0];
TAP.setString("sessionId",e.meta.session_id) ;
TAP.setString ("user",JSON.stringify (user)) ;

// set this for ACS to track session connected
cloud.sessionId = e.meta.session_id;

// callback with newly created user
_callback && _callback({
success: true,
model: new model (user)
)i
} else {
Ti.API.error (e);
_callback && callback({
success: false,
model: null,
error: e

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS

The _userInfo parameter will be a JavaScript hash of the parameters required by
Appcelerator Cloud Services to create a user. You will extract the values from the user inter-
face elements you created in 1ogin. xml view and create the object in the controller method
you will create soon. The _callback parameter is the same as the login function; it is the
method called after the Appcelerator Cloud Services method is completed.

User Logout Method

Logging out the user will disconnect the session with Appcelerator Cloud Services and will
keep the user from making API calls that require authentication. You will extend the user
object once again to make the Appcelerator Cloud Services call exactly as specified in the
official documentation.

logout: function(_callback) {
var cloud = this.config.Cloud;
var TAP = Ti.App.Properties;

cloud.Users.logout (function (e) {
if (e.success) {
var user = e.users[0];
TAP.removeProperty ("sessionId") ;
TAP.removeProperty ("user") ;

// callback clearing out the user model
_callback && _callback ({
success: true,

model: null
1)
} else {

Ti.API.error (e) ;
_callback && _callback ({
success: false,
model: null,

error: e

www.it-ebooks.info

179

http://www.it-ebooks.info/

180

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Additional User Management Methods

You need a few helper methods to manage the user’s session. In Appcelerator Cloud Services,
the user’s session is maintained for a predetermined amount of time so you don’t have to
always log in the user. If you noticed in the previous code that on account creation and user
login, you save the session ID from Appcelerator Cloud Services. You can later retrieve the
session by calling this method authenticated, which you can add to the user model with

the following code.

authenticated : function() {

b

The authenticated function will reset the user session appropriately in order for the applica-
tion to function properly, but updating the user upon restoring the session will ensure that
any updates to the user model are reflected in the application. Adding the following code will
call the Appcelerator Cloud Services method to get the user information for the account
associated with the current session. Like you did in the previous sections, add this code to
the user model to extend its functionality so it can retrieve the user model from the cloud.

var cloud = this.config.Cloud;
var TAP = Ti.App.Properties;

if (TAP.hasProperty ("sessionId"))
Ti.API.info ("SESSION ID " + TAP.getString("sessionId")) ;
cloud.sessionId = TAP.getString("sessionId") ;
return true;

}

return false;

showMe: function(callback) {

var cloud = this.config.Cloud;
var TAP = Ti.App.Properties;
cloud.Users.showMe (function (e) {
if (e.success) {
var user = e.users|[0];
TAP.setString("sessionId", e.meta.session id);
TAP.setString("user", JSON.stringify(user)) ;
_callback && _callback({
success: true,
model: new model (user)
P
} else {
Ti.API.error (e) ;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS 181

TAP.removeProperty ("sessionId") ;
TAP.removeProperty ("user") ;

_callback && _callback ({
success: false,
model: null,
error: e

3N
3N

You set up the application variables in the successful function of showMe the same way you
respond to success of a user login method call.

Updating the Index Controller

The index controller is the starting point for the application. This is where you want to con-
firm users’ statuses and direct them to the proper controller if they are logged in or not. You
will first update the index. js controller and then you will set up the 1login. js controller,
which will do most of the heavy lifting in regard to the user status in the application.

Set Up the Basics in the Index Controller

You need to check if the user in logged into the application or has a session saved for the
application. You will use the authenticated method created in the user model. You can begin
making the changes to the index model by creating a user model and checking to see if there
is an existing method.

Replace the existing function to log the user in with the following code in index. js:

if (user.authenticated() =
$.userLoggedInAction () ;

} else {
$.userNotLoggedInAction () ;

You can see the methods are named such that what you are doing is apparent to the reader.
If the application has an existing session, then call the userLoggedInAction method; oth-
erwise, call the userNotLoggedInAction. From this section, you know what you need to

www.it-ebooks.info

http://www.it-ebooks.info/

182 BUILDING CROSS-PLATFORM APPS USING TITANIUM

do in the userLoggedInAction—you need to get the user object since you only have con-
firmed that there is an active session. The bulk of the code userLoggedInAction is for
getting the user associated with the session and setting up the app to initialize itself. You use
the method showMe, which is a new function added to the user model when it was extended,
add the following function to the index. js controller file:

$.userLoggedInAction = function () {
user.showMe (function(response) {
if (_response.success === true) {
indexController.loginSuccessAction(_ response) ;
} else {
alert ("Application Error\n " + response.error.message) ;
Ti.API.error (JSON.stringify(response.error, null, 2));

// go ahead and do the login
$.userNotLoggedInAction () ;

I3F;
)i

The userLoggedInAction mentions a function you have not seen yet, loginSuccess
Actionitincludes everything that must be done to set the application up after the user has
been successfully validated. You will call this method after you validate the session of the
current user, when creating a new account, and when asking the user to enter a username
and password for a valid ACS user account.

$.loginSuccessAction = function(options) {

Ti.API.info('logged in user information');
Ti.API.info(JSON.stringify(options.model, null, 2));

// open the main screen
$.tabGroup.open () ;

// set tabGroup to initial tab, in case this is coming from
// a previously logged in state

$.tabGroup.setActiveTab (0) ;

// pre-populate the feed with recent photos
S.feedController.initialize() ;

// get the current user
Alloy.Globals.currentUser = _options.model;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS

// set the parent controller for all of the tabs, give us
// access to the global tab group and misc functionality
$.feedController.parentController = $;
$.friendsController.parentController = $;
$.settingsController.parentController = $;

// do any necessary cleanup in login controller
$.loginController && $.loginController.close();

i

This function requires the callback object with success set to true and a user model
specified.

UserNotLoggedInAction is called when the application does not detect a session saved
on the device. Since there is no session, you provide the user with options as to what to do
next. The functionality of the login process and the create account process is encapsulated in
the login controller.

You will first see if there has already been a login controller loaded into memory, if not, you
will create the controller, pass it the required parameters for initialization, and save the
object. If the login controller exists, you will open the controller to provide the user with the
options for starting the application.

Later in the application you will create a settings page for the users to view information
about their account and to log out of the application. After the logout process is complete,
the application will also call userNotLoggedInAction to reset the user interface for log-
ging in or creating a new account.

$.userNotLoggedInAction = function() {

// open the login controller to login the user
if (!$.loginController)
var loginController = Alloy.createController ("login", ({
parentController : S,
reset : true

3N

// save controller so we know not to create one again
$.loginController = loginController;

// open the window
$.loginController.open (true) ;

www.it-ebooks.info

183

http://www.it-ebooks.info/

184

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Creating the Login Controller

In the controller, you will begin by creating the event handlers for the click events on the but-
tons in the view. The view was constructed such that to perform specific actions, you will
hide and show containers for logging in and for creating accounts. The buttons and the asso-
ciated event handlers are named to reflect the appropriate actions.

Add the following code to the login. js controller file:

$.showLoginBtn.addEventListener ('click', showLoginBtnClicked) ;
S.showCreateAccountBtn.addEventListener ('click',
showCreateAccountBtnClicked) ;
$.cancelCreateAcctBtn.addEventListener ('click',
cancelActionButtonClicked) ;
$.cancelloginBtn.addEventListener ('click!',
cancelActionButtonClicked) ;

The next set of handlers respond to the button clicks to perform either the login action or
the create account action.

$.doLoginBtn.addEventListener ('click', doLoginBtnClicked) ;
$.doCreateAcctBtn.addEventListener('click',
doCreateAcctBtnClicked) ;

The showLoginAction and showCreateAccountAction functions are structured the
same; they basically hide and show the appropriate containers, which then provides the user
with the appropriate user interface elements for the specific action. In a more advanced, pro-
fessional application you might include animation effects of sliding in or fading in and out
elements, but they are beyond the scope of this book.

function showLoginBtnClicked() {
S.createAcctView.hide () ;
$.homeView.hide () ;
$.loginView. show () ;

}i

You are showing the login container and then hiding everything else. In the case of the create
account, you do the same except use the createAccount container.

function showCreateAccountBtnClicked()
S.createAcctView. show() ;
$.homeView.hide () ;
$.loginView.hide () ;

}i

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS

The last event handler you will add at this time is in response to a click on the Cancel button.
Canceling either the create action or the login action should return the users to the initial
login controller state.

function cancelActionButtonClicked () {
$.createAcctView.hide () ;
$.loginView.hide () ;

// set the global login state to false
Alloy.Globals.loggedIn = false;

// display only the home state view
$.homeView.show () ;

Logging in the User

When you log in the user, you will be using the user model created previously in the chapter
and calling the login method you added to the object when extending it. If you recall, the
method required the username, password, and a callback method. The user interface you cre-
ated in the login.xml view file will prompt the user for the information, which you will
then pass to the login method when the user clicks the login button.

Clicking the login button will execute the login button click handler and execute the follow-
ing function:

function doLoginBtnClicked() ({

// create instance of the user model
var user = Alloy.createModel ('User') ;

// call the extended model's function
user.login($.email.value, $.password.value, function(_resp) ({
if (_resp.success === true) ({
// Do stuff after successful login.
Alloy.Globals.loggedIn = true;
Alloy.Globals.CURRENT USER = _resp.model;

$.parentController.loginSuccessAction(_resp) ;

} else {

www.it-ebooks.info

185

http://www.it-ebooks.info/

186 BUILDING CROSS-PLATFORM APPS USING TITANIUM

// Show the error message.
alert ("loginFailed", response.error.message) ;

Alloy.Globals.CURRENT USER = null;
Alloy.Globals.loggedIn = false;

3K
}i

The function is a pretty straightforward use of the login method on the extended user model.
You will get the username and password from the interface by accessing the value property on
the two text fields. When the call is completed, you will have a user model for the logged-in user.
There are two global variables created for tracking the user login state and the current user.

You need to set the information on the parent controller so you can execute the login success
function. Add this code to the top of the login. js controller file:

$.parentController = args.parentController;

Creating the User Account

Creating the account is very similar to logging in because you will once again use the value
property on the text fields to get the required parameters for the user model. You will pass in
the username, first name, last name, email, and password with confirmation. Once the
account is created successfully, you will perform the same actions as when you have a suc-
cessful login. Since the actions are similar, you can do a slight refactoring of the code.

function userActionResponseHandler (_ resp) {
if (_resp.success === true) {

// Do stuff after successful login.
Alloy.Globals.loggedIn = true;
Alloy.Globals.CURRENT USER = resp.model;
$.parentController.loginSuccessAction(resp) ;

} else {
// Show the error message and let the user try again.

alert ("loginFailed", resp.error.message) ;

Alloy.Globals.CURRENT USER = null;
Alloy.Globals.loggedIn = false;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS

You can remove the callback code from the login function and create a function of its own.
Now the createAccount and the login functions are very clean and simple. They get code
from the user interface, make a call to the user module, and then pass the response to be
handled by the userActionResponseHandler:

function doLoginBtnClicked() ({
var user = Alloy.createModel ('User') ;

user.login($.email.value, $.password.value,
userActionResponseHandler) ;

Vi

Here is a simple, refactored create account function:

function doCreateAcctBtnClicked() {
if ($.acct password.value !==
$.acct_password confirmation.value) {
alert ("Please re-enter information") ;

return;

}

var params = {
first name : $.acct fname.value,
last name : $.acct lname.value,
username : $.acct email.value,
email : $.acct _email.value,

password : $.acct password.value,
password confirmation : $.acct password confirmation.value,

bi
var user = Alloy.createModel ('User') ;

user.createAccount (params, userActionResponseHandler) ;

bi

Now you need to add some code to initialize the controller when the user needs to log in or
create an account. This is done with the open function, which you add to the login.js
controller.

www.it-ebooks.info

187

http://www.it-ebooks.info/

188

BUILDING CROSS-PLATFORM APPS USING TITANIUM

$.open = function(reset) {
_reset && cancelActionButtonClicked() ;
$.index.open() ;

}i

When the login action or create account action is completed, you will need to clean up the
login controller. The close function is added for that purpose:

$.close = function() {
$.index.close() ;

}i

You can run the code now to see how the interface looks and create a sample account if you
like. The screens you see should more or less match the figures shown in the previous sec-
tions of this chapter.

Now the code is set up for you to create an account using your email address and a password,
but since you may also want to integrate social media into the application, Facebook integra-
tion is a great idea. Many people utilize Facebook and feel comfortable logging into applica-
tions with those credentials. Appcelerator Cloud Services has made it easy to integrate into
your application along with the Appcelerator Facebook module.

Using Facebook for Account Creation

You can find specific details on setting up your app to work with Facebook on the Appcelerator
Developer’s website. The information provided in the book assumes you have followed the
directions and configured your application properly with Facebook. See http://docs.
appcelerator.com/titanium/latest/#!/api/Modules.Facebook.

Setting Up an Application to Use the Facebook Module

You will add the Facebook setup code to the alloy. js file. You can add the Facebook object
to the Alloy.Globals namespace to access it throughout the application.

// Using FB module in the latest release of Appcelerator
Alloy.Globals.FB = require ('facebook') ;

Another practice you might find helpful is to set the Facebook appid as a property in your
tiapp.xml file:

<property name="ti.facebook.appid">FACEBOOK APP_ ID</propertys

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Modules.Facebook
http://docs.appcelerator.com/titanium/latest/#!/api/Modules.Facebook
http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS

Facebook Button in the login.xml File

The Facebook button you created in the login.xml view will trigger the login process for
the application to integrate with Facebook for logging into your application or to launch a
web view for logging into your application. You need to get the Facebook Access Token,
which is a property returned after a successful login. This property must be provided to
Appcelerator Cloud Services for associating the Appcelerator Cloud Services user account
with the specified Facebook credentials.

Facebook Method in the User Model

In the user model, you will extend the object once again to make a call to the Appcelerator
Cloud Services method SocialIntegrations.externalAccountLogin, using the
Facebook Access Token to connect the account to Appcelerator Cloud Services. The success-
ful execution of this call will return a user account object the same way the login method and
the create account method do.

updateFacebookLoginStatus : function(accessToken, opts) {
var cloud = this.config.Cloud;

var TAP = Ti.App.Properties;

// 1f not logged into facebook, then exit function

if (Alloy.Globals.FB.loggedIn == false) {
_opts.error && _opts.error ({
success : false,
model : null,
error : "Not Logged into Facebook"

I3
alert ('Please Log Into Facebook first');
return;

// we have Facebook access token so we are good
cloud.SocialIntegrations.externalAccountLogin ({
type : "facebook",
token : accessToken
}, function(e) ({
if (e.success) {
var user = e.users|[0];
TAP.setString("sessionId", e.meta.session id);
TAP.setString("user", JSON.stringify(user)) ;

www.it-ebooks.info

189

http://www.it-ebooks.info/

190

BUILDING CROSS-PLATFORM APPS USING TITANIUM

// save how we logged in
TAP.setString ("loginType", "FACEBOOK") ;

_opts.success && _opts.success ({
success : true,
model : new model (user),
error : null

i

} else {

Ti.API.error (e);

_opts.error && _opts.error ({
success : false,
model : null,
error : e

This function will return a user object just like the login and create account functions. The differ-
ence is that there will not be any of the appropriate fields associated with the user object that you
get when you create an account through the create account form. Remember you did not enter an
email address, a first name, or a last name. You will need to handle that in the login controller.

Facebook Handler in Login Controller

You need to add the event listener to the login. js controller file:

$.showLoginFBBtn.addEventListener ('click', doFacebookLoginAction) ;

The doFacebookLoginAction function has to do several things:

m Itmustlogin to Facebook and get an access token for Appcelerator Cloud Services to use.

m [t must also create a user object and call an extended method to create the ACS user
account linked to the Facebook account.

m Finally, it must update the ACS user account with the user information from Facebook;
email, first name, and last name.

You can start off with some of the supporting functions that will help the main login
action; you need an event handler for the successful response from logging in to Facebook.
This function will clean up the event listener so there is no memory leak and it will call
doFacebookLoginAction again with the appropriate Facebook credentials and a logged-
in Facebook user’s access token. See Figure 7-7.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS 191

function faceBookLoginEventHandler (event) {

Alloy.Globals.FB.removeEventListener ('login',

faceBookLoginEventHandler) ;

if (_event.success) {
doFacebookLoginAction(_event.data) ;
} else if (_event.error) {
alert (_event.error) ;
} else {
_event.cancelled && alert ("User Canceled");

You must log in first.

Get Facebook for Android and browse
faster.

Create New Account

Forg word? - Help Center

English (US) - Espafiol - Portugués (Brasil) - More...

Facebook ©2014

FIGURE 7-7: The Facebook login Ul should be consistent on iOS and Android.

www.it-ebooks.info

http://www.it-ebooks.info/

192

BUILDING CROSS-PLATFORM APPS USING TITANIUM

When you're testing, you might see the screen in Figure 7-8, which indicates that you have
already authenticated Facebook with this application.

Carrier ¥ 12:36 AM

a facebook.com

Facebook

You have already authorized
Wileytigram.

h D O

FIGURE 7-8: The Facebook already authorized UI should also be consistent on iOS and Android.

In the doFacebookLoginAction, there are two potential error scenarios—one when the
user attempts the initial call to ACS to log in the user and the second when the user model is

to be updated with the additional account information. Instead of duplicating the error func-

tionality, you can create a function.

function faceBookLoginErrorHandler(user, _error) {

// Show the error message somewhere and let the user try again.
alert ("Exrror: " + error.code + " " + error.message);

Alloy.Globals.loggedIn = false;
Alloy.Globals.CURRENT USER = null;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS

Now that the supporting functions are in place, you can implement the primary function.
This function supports two states—logged in to Facebook and not logged in. The following
code shows the not logged in state. When in this state, you will direct the user through the
path of authenticating with Facebook through the Appcelerator Facebook module and you
will use the faceBookLoginEventHandler method to take the appropriate action based
on the user’s interaction with the Facebook module.

Add this code to the 1ogin. js controller to a new function doFacebookLoginAction:

function doFacebookLoginAction(options) {
var FB = Alloy.Globals.FB;

if (FB.loggedIn === false) ({

/// Enabling single sign on using FB
FB.forceDialogAuth = false;

// get the app id
FB.appid = Ti.App.Properties.getString("ti.facebook.appid") ;

// set permissions
FB.permissions = ["read stream"];

// login handler with callback
FB.addEventListener ("login", faceBookLoginEventHandler) ;

// attempt to authorize user
FB.authorize () ;

} else {

}

If the user has already logged into Facebook, you have the Facebook access token necessary
for the Appcelerator Cloud Service’s call, so you can call the updateFacebookLogin
Status method on the user object to create or authenticate the user.

Add this code to the else condition of the if statement you just added to the
doFacebookLoginAction:

var user = Alloy.createModel ('User') ;

user.updateFacebookLoginStatus (FB.accessToken, {
success : function(resp)

www.it-ebooks.info

193

http://www.it-ebooks.info/

194

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Ti.App.Properties.setString("loginType", "FACEBOOK") ;

Alloy.Globals.loggedIn = true;
Alloy.Globals.CURRENT USER = _resp.model;

// save the newly created Facebook user
if (! resp.model.get ("username") && options.email) {
_resp.model.save ({

"email" : options.email,
"username" : _options.username
b o
success : function(user, _response) {

$.parentController.loginSuccessAction(_resp) ;

Alloy.Globals.CURRENT USER = _user;
I
error : faceBookLoginErrorHandler
P
} else {
$.parentController.loginSuccessAction(_resp) ;

b

error : faceBookLoginErrorHandler

I3F;

In the login controller you need to update the user object returned with the email address and
the first and last name of the user so you have a proper user object. The user account created
by default from the Appcelerator Cloud Services method will not include those fields. You can
get those fields as part of the data returned from the successful Facebook login method you
called to get the access token. You will use those fields and perform an update on the user
model returned from Appcelerator Cloud Services. The account should then be all ready to go.

Updating User with Facebook Information

When the user account is created through Facebook, the user does not enter her email
address or username, in fact the user doesn’t enter any information at all. The application is
built so that on successful Facebook login, you will get the additional information you need
for the user from the Facebook account information.

The first step is to update the acs. js sync adapter to update the user objects. Add the fol-
lowing code to the sync adapter in the processACSUsers function:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 INTEGRATING USER ACCOUNTS 195

function processACSUsers (model, method, options) ({
switch (method) {
case "update":
var params = model.toJSON() ;
Cloud.Users.update (params, function(e) {
if (e.success) {
model.meta = e.meta;
options.success && options.success(e.users[0]) ;
model.trigger ("fetch") ;
} else {
Ti.API.error ("Cloud.Users.update " + e.message);
options.error &&
options.error (e.error && e.message || e);

I3F;

break;

When you save the user object after successfully logging in with Facebook in the function
updateFacebookLoginAction you will used the fields from Facebook to update the user
object. See the following code from the updateFacebookLoginAction:

_resp.model.save ({

"email" : options.email,
"username" : options.username
b o
success : function(user, _response) { },
error : faceBookLoginErrorHandler

)

The options parameter holds all of the information returned from the successful Facebook
login.

Check for Facebook Authentication on Startup

The Facebook module provided by Appcelerator provides a method to determine if the user
haslogged in with Facebook and if there is a valid session you can use within the application.
In this specific scenario, you do not need to check for a specific Facebook login because the
Appcelerator Cloud Services session is the one that matters.

www.it-ebooks.info

http://www.it-ebooks.info/

196

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Logging Out of Facebook

You should call the Facebook logout whenever the user logs out of the application and the
login type global variable is set to indicate the user logged in with Facebook. You should also
call the logout method whenever the user attempts to log in using Facebook to ensure you
are working with a clean slate and have eliminated any lingering Facebook session
information.

Summary

In this chapter you moved away from using the default test account to allowing users of the
application to create their own accounts with their own usernames and passwords or by
leveraging an existing Facebook account.

You have added code for the users to log in with the new account with the custom extensions
that were written for the user model. You also learned how to extend the functionality of the
acs.js sync adapter to work with user models.

Finally, you learned how to add the “remember me” functionality, whereby the application
saves the user and session information. This enables a more seamless user experience
because, after the user has logged in to the application once, there is no requirement to log in
again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

Working with Friends
and Followers

APPCELERATOR CLOUD SERVICES comes with a robust set of predefined objects, many
of which you have used already to build your application. The next one you will use is the
Friends object. This object allows you to create relationships between users so you can
create followers just like with Facebook and Twitter. In the application you are building, you
will allow the users of the application to select users to follow so they can view pictures of all
of the people they follow. The pictures will automatically be added to the feed.

In this chapter, you will create new models, views, and controllers to support the Friends
functionality and also update other areas of the application to support the Friends func-
tionality. See http://docs.appcelerator.com/cloud/latest/#!/api/Friends.

Before you get started with friends and followers, you need to create a library to provide the
activity indicator. This will let users know that there is some sort of network or long activity
happening and that the application is not locked up. This also gives you an opportunity to
see how Commonds libraries can be integrated into your application, potentially repurposing
old non-Alloy-based code that you believe is still valuable in your development toolset.

Creating the CommonJS Library in Alloy

Go to the folder app/ 1ib; in that directory, create a new file called progresswWindow.js.

In this file, you can write plain old JavaScript code with plain old objects, the way you did
before Alloy came along. You will create a set of functions to hide or show a progress window
and export those functions so this library can be used throughout your application.

www.it-ebooks.info

http://docs.appcelerator.com/cloud/latest/#!/api/Friends
http://www.it-ebooks.info/

198

BUILDING CROSS-PLATFORM APPS USING TITANIUM

In this example, you will use the pre-Alloy window and user interface creation functions;
once again, this is to demonstrate the flexibility of Alloy and to show how you can mix the
old and new together to create your application.

Adding the Code

The variables that are within the scope of this library are created first. You have variables for
the user interface components and variables to let you know if a progress window is dis-
played or not.

var activityIndicator, showingIndicator, activityIndicatorWindow,
progressTimeout;
var progressIndicator = null;

Next you will create the two functions, one to show the activity window and one to hide
the activity window. This code is very similar to the code provided in the documentation
on the Titanium.UI.ActivityIndicator at http://docs.appcelerator.com/
titanium/3.0/#!/api/Titanium.UI.ActivityIndicator.

Here is the code for showing the activityIndicator:

exports.showIndicator = function(messageString) {
Ti.API.info('showIndicator: ' + _messageString) ;

activityIndicatorWindow = Titanium.UI.createWindow ({

top : O,

left : 0,

width : "100%",

height : "100%",
backgroundColor : "#58585A",
opacity : .7

I3F;

activityIndicator = Ti.UI.createActivityIndicator ({
style : OS_IOS ? Ti.UI.iPhone.ActivityIndicatorStyle.DARK
Ti.UI.ActivityIndicatorStyle.DARK,
top : "10dp",

right : "30dp",

bottom : "10dp",

left : "30dp",

message : _messageString || "Loading, please wait.",
color : "white",

www.it-ebooks.info

http://docs.appcelerator.com/titanium/3.0/#!/api/Titanium.UI.ActivityIndicator
http://docs.appcelerator.com/titanium/3.0/#!/api/Titanium.UI.ActivityIndicator
http://www.it-ebooks.info/

Vi

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS

font : {
fontSize : 16,
fontWeight : "bold"
b
style : 0
I
activityIndicatorWindow.add (activityIndicator) ;
activityIndicatorWindow.open() ;
activityIndicator.show() ;
showingIndicator = true;

// safety catch all to ensure the screen eventually clears

// after 25 seconds

progressTimeout = setTimeout (function() {
exports.hideIndicator () ;

}, 35000);

Here is the code for hiding the activityIndicator

exports.hideIndicator = function() ({

if (progressTimeout) ({
clearTimeout (progressTimeout) ;
progressTimeout = null;

Ti.API.info('hideIndicator') ;
if (!showingIndicator) {
return;

}

activityIndicator.hide() ;

activityIndicatorWindow.remove (activityIndicator) ;
activityIndicatorWindow.close() ;
activityIndicatorWindow = null;

// clean up variables

showingIndicator = false;
activityIndicator = null;

www.it-ebooks.info

199

http://www.it-ebooks.info/

200

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Notice the exports reserved word used in the beginning of the two functions; this allows
the functions to be exported as part of the Commonds library you have just created. So now
you need to require the library so that it can be used throughout your application.

You can open the alloy.js file in the root of your application directory. At the top of this
file, in the comments section, it explains how this file is run before anything else in your
application and how it is a great place to include globals and global functions. This is what
you are going to do.

Add the following code to the alloy.js file:

Alloy.Globals.PW = require('progressWindow') ;

This code will create an instance of the progressWindow library that you can now use
throughout your application and that you will start to use when querying for friends and fol-
lowers in this chapter.

Adding the Friends User Interface

You created a basic window when you started the application so that you could move through
the application tabs. Now is the time to add some new functionality to the window.

You will also get to work with some new concepts and a new user interface element called a
Titanium.UI.ListView in this section. First off the Titanium.UI.ListView. The
Titanium.UI.ListView provides a better user interface for displaying and managing lists
of objects in the interface on your mobile application. The Titanium.UI.ListView will
provide noticeable scrolling speed improvements over the Titanium.UI.TableView on
iOS and will probably address troublesome bugs you found when implementing complex
rows on Android.

The other new concept introduced in this chapter is data binding. Data binding allows you to
create views that will update automatically based on changes in the underlying model or col-
lection that you bind to the view. In this chapter, you will bind the collection of users from
the friends model to the Titanium.UI.ListView, but it is possible to also bind a single
model to a view.

The Titanium.UI.ListView is made up of the Titanium.UI.ListView, Titanium.
UI.ItemTemplate, Titanium.UI.ListSection, and Titanium.UI.ListItem,all of
which can be configured in the view file and the . tss style file with no code required in the
controller file. The Appcelerator documentation has a thorough overview of the differences
between the Titanium.UI.ListView and the Titanium.UI.TableView, so I cover
only the basics required for the application you are building.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS

The user interface for the friends view is quite simple; it is a window with a list comprised of
list rows that contain an image from the specific users profile, the user’s name, and a button
to make the user your friend or to end the friendship. At the top of the window is a
Titanium.UI.TabbedBar on iOS devices for toggling between the different user lists. On
Android, you will use the Titanium.UI.Picker control to perform the same function.

Open the file friends.xml in the views folder and add the following code. You will begin
by laying out the high-level objects; I'll cover Titanium.UI.ListView specifics later in
this section.

<Alloy>
<Tab title="Friends">
<Window title="Friends" id="friendsWindow">
<!-- used to toggle between different types of users -->
<View id="filterContainer">
<TabbedBar id="filter" platform="ios">
<Labelss>
<Label>Users</Label>
<Labels>Friends</Label>
</Labels>
</TabbedBars>
<View id="androidPickerContainer"
platform="android">
<Picker id="filter">
<PickerColumn id="columnl">
<PickerRow title="Users"/>
<PickerRow title="Friends"/>
</PickerColumns>
</Pickers>
</View>
</View>
<ListViews>
<Templates>
<ItemTemplate/>
</Templates>
<ListSection>
<ListItem />
</ListSections>
</ListView>
</Window>
</Tab>
</Alloy>

www.it-ebooks.info

201

http://www.it-ebooks.info/

202

BUILDING CROSS-PLATFORM APPS USING TITANIUM

The first thing you might notice at the top is the creation of the Titanium.UI.TabbedBar
and the Titanium.UI.Picker controls. Since you are using the plat formattribute in the
XML file, you can control which user interface elements get compiled into the build based on
the platform. This allows you to create the cross-platform application, yet provide platform-
specific user interface elements, all from the same code base. Both of these elements respond
to events that will let you know which item is clicked and is active. You will use this to control
which group of users is rendered in the Titanium.UI.ListView.

The user interface styling for the Titanium.UI.TabbedBar and the Titanium.
UI.Picker controls are pretty straightforward. You will use the platform-specific attribute
in the friends. tss file to control the differences in the style elements based on platform.
There is the style of the Titanium.UI.TabbedBar that’s OS-specific. On Android, the
dimension of the control and additional non-iOS attributes are required.

The contents of your friends.tss file should look similar to the following in order to
render the page properly to match the original wireframes.

".container": {

backgroundColor: "white"

}

"#friendsWindow" :
layout: "vertical"

b

"#filterContainer" : ({
top: "5dp",
height: Ti.UI.SIZE,
width: "70%"

b

"#androidPickerContainer" : {
height: Ti.UI.SIZE,
width: Ti.UI.SIZE,
backgroundColor : 'gray'

b

"#filter [platform=ios]" : {
style: Ti.UI.iPhone.SystemButtonStyle.BAR,
height: 30,
width: "86%"

I

"#filter [platform=android]" : {
height: "38dp",
width: "70%",
selectionIndicator: true

b

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS

To round out the Titanium.UI.Picker and Titanium.UI.TabbedBar functionality, you
can open up the friends. js controller file and start to enter the code for handling events on
the control for selecting the type of users in the list. Since the ListView and the models are
not created yet, you will create stub methods to fill in later with the actual functionality.

The first thing after the basic setup code is to include the code for handling the events:

// EVENT LISTENERS

// on android, we need the change event not the click event

$.filter.addEventListener (OS_ANDROID ? 'change' : 'click',
filterClicked) ;

$.friendsWindow.addEventListener ("androidback",
androidBackEventHandler) ;

/**
* called when the back button is clicked, we will close the
* window and stop event from bubbling up and closing the app
*
* @param {Object} _event
*/
function androidBackEventHandler (_event) {
_event.cancelBubble = true;
_event.bubbles = false;
Ti.API.debug("androidback event") ;
$.friendsWindow.removeEventListener ("androidback",
androidBackEventHandler) ;
$.friendsWindow.close() ;

The interesting code here is once again changes added to support both platforms from the
same code base. When using the Titanium.UI.Picker on Android, when the user selects
the specific item, a change event is triggered. When the Titanium.UI.TabbedBar is
changed, the event you want to listen for is the c1ick event. Luckily, both events return the
information required to take the appropriate action so you only need one function to handle
the logic for both platforms.

The £ilterClicked function responds to the event and calls the appropriate functions for
displaying the users. The _event generated provides the index that you need in a different
property, index, or rowIndex, depending on the specific platform you are building for; the
conditional statement at the start of the function handles that for you to keep the rest of the
code straightforward.

www.it-ebooks.info

203

http://www.it-ebooks.info/

204 BUILDING CROSS-PLATFORM APPS USING TITANIUM

function filterClicked(event) {
var itemSelected;
itemSelected = ! OS ANDROID ? _event.index : _event.rowIndex;

// clear the ListView display
$.section.deleteltemsAt (0, $.section.items.length);

// call the appropriate function to update the display
switch (itemSelected) (
case 0
getAllUsersExceptFriends () ;
break;
case 1
loadFriends () ;
break;

The next step is to return to the friends . xml file to discuss the Titanium.UI.ListView
element for rendering the list of users.

As stated earlier, there is a thorough explanation of the Titanium.UI.ListView and its
many options in the Appcelerator documentation. This is a simple example that you will
probably use multiple times in your application development experience, but please read the
documentation because there is so much more functionality available in this element.

Titanium.UI.ListView renders a section containing items based on a specific template.
In this example, the template for all of the list items are the same based on the selected
picker item. You will configure most of the element’s information in the .xml and . tss files.

First you add an id to the Titanium.UI.ListView element so it can be accessed in the
controller.

<ListView id="listView">

Next, you set the Titanium.UI.ItemTemplate; since you can have multiple Titanium.
UI.ItemTemplates, there is a container element in the XML called Titanium.
UI.Templates. You will add two templates to the XML file, one for users you are following
and one for users you are not following. You can see in the following code that the elements
look very similar to how you set up the complex Titanium.UI.TableViewRow earlier in

the book.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS 205

<Templates>
<ItemTemplate name="fullItem" height="40dp" width="Ti.UI.FILL">
<View id="userView">
<ImageView bindId="userAvatar" id="userAvatar"/>
<Label bindId="userName" id="userName"/>
</Views
<Button title="Follow" class="actionBtn"
onClick="followBtnClicked"/>
</ItemTemplate>
<ItemTemplate name="friends" height="40dp" width="Ti.UI.FILL">
<View id="userView">
<ImageView bindId="userAvatar" id="userAvatar"/>
<Label bindId="userName" id="userName"/>
</Views
<Button title="UnFollow" class="actionBtn"
onClick="followingBtnClicked"/>
</ItemTemplate>
</Templates>

A few points to notice here. You are specifying the event handler of the button in the template;
this is required because there is no access to the specific button element from the controller.
Later in the chapter you will create the followBtnClicked and followingBtnClicked
functions in the controller to respond to the button click to follow or un-follow a user.

The Titanium.UI.ListSection isvery similarto Titanium.UI.TableViewSection.
Here in the view.xml file, you specify the Titanium.UI.ListSection with the
Titanium.UI.ListItem element. The List section requires an ID attribute so it can be
accessed from the controller; for the Titanium.UI.ListItem, we will leave that blank for
now since most of the attributes are specific to data-binding.

<ListSection id="sgection" >
<ListItem />
</ListSection>

Finishing Up the ListView with Style

The friends.tss file now needs to be updated to properly format the list view to reflect
the functionality described in the wireframes presented earlier in the book. Open the
friends. tss file and add the following code.

"#listvView" : {
background : "white",
separatorColor : '#CCC',

www.it-ebooks.info

http://www.it-ebooks.info/

206 BUILDING CROSS-PLATFORM APPS USING TITANIUM

width: Ti.UI.FILL,
height: Ti.UI.FILL

b
"#userAvatar" : {
width: "36dp",
height: "36dp",
b
"#userName" : {
left : "sdp",
width: Ti.UI.SIZE,
height: Ti.UI.SIZE,
font: {
fontSize: '15dp'
}
b
"#userView" : {
top : "2dp",
left : "4dp",
background : "white",
width: Ti.UI.FILL,
height: Ti.UI.FILL,
layout : "horizontal"
b
".actionBtn[platform=android]" : {
right : "8dp",
width: "90dp",
height: "34dp",
font:
fontSize: '1l4dp'
}
}
".actionBtn[platform=ios]" : {
right : "8dp",
width: "9o0dp",
height: "26dp",
font:
fontSize: '1l4dp'
}
}

There are once again some platform-specific sections to account for device difference, but
there should be nothing new here.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS

You can add the two functions to respond to the button clicks as placeholders so the code can
compile and you can verify the user interface is correct. Add the following code to the
friends.js controller file.

function followBtnClicked(event) {}
function followingBtnClicked(event) {}

Now you can run the application and click on the Friends tab. The application should look
like Figure 8-1 or 8-2, depending on your platform.

Carrier & 9:52 AM

Friends

Friends

Friends

FIGURE 8-1: Basic user list view that is used for displaying users and friends on iOS.

Before you can go any further with the user interface, you need to have some data to render. Next
you will start to create the models necessary for the friends functionality and then you will begin
to fill in the stub methods created earlier when working with the friends. js controller.

www.it-ebooks.info

207

http://www.it-ebooks.info/

208

BUILDING CROSS-PLATFORM APPS USING TITANIUM

FRIENDS SETTINGS

S O =

FIGURE 8-2: Basic user list view that is used for displaying users and friends on Android.

After the models and the associated methods are in place, you will return to the friends.
xml view file to bind the data to the view by making a few more edits.

Introduction to Appcelerator Cloud
Services Friends Object

The basic model template is similar to how the model file has been created in the past. You
just need to set the adapter type to acs and the collection name to friends.

friend.js

exports.definition =

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS

config : {
"adapter" : {
n type n : n acs n ,
"collection name" : "friends",

b

extendModel : function (Model) {
_.extend (Model.prototype, {});
// end extend
return Model;

b

extendCollection : function(Collection) {
_.extend(Collection.prototype, {});
// end extend
return Collection;

Modifying the ACS Syne Adapter
to Support User Queries

The application needs to display a list of all of the users in the application so that the user can
select other users they would like to follow. Following other users allows you to see other
photos from users.

In this chapter, you add the functionality to get the list of users. To support querying users,
you will add code to the switch statement to support the read functionality. This approach
is very similar to how the other Appcelerator Cloud Services objects were added to the
adapter. See http://docs.appcelerator.com/cloud/latest/#!/api/Users.

To query the list of users, add the following code to the switch statement in processAC
SUsers in the acs. js sync adapter:

case "read":

opts.data = opts.data || {};
~model.id && (opts.data.user id = model.id);
var readMethod = model.id ? Cloud.Users.show

Cloud.Users.query;

www.it-ebooks.info

209

http://docs.appcelerator.com/cloud/latest/#!/api/Users.
http://www.it-ebooks.info/

210 BUILDING CROSS-PLATFORM APPS USING TITANIUM

readMethod ((opts.data || {}), function(e) {
if (e.success) {
_model.meta = e.meta;
== 1) {
opts.success (e.users[0]) ;
} else {
opts.success (e.users) ;

if (e.users.length

}

_model.trigger ("fetch");
return;
} else {
Ti.API.error ("Cloud.Users.query " + e.message);

opts.error (e.error && e.message || e);

break;

The code follows the function provided by the Appcelerator Cloud Services documentation,
but you are combining querying for a list of users with querying or showing one user. The
trick is model id. If there is a model id present, then you will call the function Cloud.
Users . show because you want a specific user. If there is no ID specified, then you are look-

ing for a list of users and then will call Cloud.Users.query.

This one switch condition can return a single user as a model object or multiple users as a

collection of user model objects.

Modifying the ACS Sync Adapter to Support Friends

To wire up the friends support in the sync adapter, you will follow the same pattern as when
adding support for the other ACS objects. First, you create the stub function for the specific

object type and then provide a handler for create, read, update, and delete.

function processACSFriends (model, method, opts) {
switch (method) ({
case "create"
break;
case "read"
break;
case "delete"
break;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS

Next you need to ensure the adapter branches when object name equals friends; see the
following updated code:

function Sync(method, model, opts) ({
var object name = model.config.adapter.collection name;

if (object name === "photos") ({
processACSPhotos (model, method, opts);
else 1 object name === "users"
1 if (obj -)
processACSUsers (model, method, opts);
else 1 object name === "reviews"
1 if (obj - i)
processACSComments (model, method, opts);
else 1 object name === "friends"
1 if (obj - friends")
processACSFriends (model, method, opts);

Now you need to start to fill out the functions for each of the CRUD options in the process
ACSFriends function. This approach is very similar to how the other Appcelerator Cloud
Services objects were added to the adapter. See http://docs.appcelerator.com/
cloud/latest/#!/api/Friends.

The corresponding methods documented at this link will be integrated into the adapter so
you can separate the model’s behavior indirectly into the object and not have it spread
through the entire application.

Creating the Friend Relationship

This code is straight from the documentation sample, but modified to support the Backbone
model it will need to return. The code follows the Backbone.js pattern of determining param-
eters by looking on the provided option parameter of the model. In the case of the create/add
method, the required parameters are passed in the model provided. Since the Appcelerator
Cloud Service method does not return an object, but only success or failure, you will just
return an empty object upon success.

case "create":
var params = model.toJSON() ;

Cloud.Friends.add (params, function (e) {
if (e.success) {
model .meta = e.meta;
opts.success && opts.success ({});

www.it-ebooks.info

211

http://docs.appcelerator.com/cloud/latest/#!/api/Friends
http://docs.appcelerator.com/cloud/latest/#!/api/Friends
http://www.it-ebooks.info/

212 BUILDING CROSS-PLATFORM APPS USING TITANIUM

model.trigger ("fetch") ;

return;

}

Ti.API.error (e);
opts.error && opts.error (e.error && e.message || e);
model.trigger ("error") ;

3K

break;

Finding Friend Relationships Based on a User’s ID

This code is straight from the documentation sample but modified to support the Backbone
model it will need to return. The function determines its parameters by looking on the pro-
vided options parameter of the function. This code is implemented to look for the userid
in either the options.data or as part of the model, specifically the model. id property.
This function will return all friends of the selected user as a collection of user objects you cre-
ated in the last chapter.

case "read":

opts.data = opts.data || {};
~model.id && (opts.data.user id = model.id) ;
Cloud.Friends.search((opts.data || {}), function(e) {

if (e.success) {
_model.meta = e.meta;
opts.success (e.users) ;
_model.trigger ("fetch") ;

return;

} else {
Ti.API.error ("Cloud.Friends.query " + e.message);
opts.error(e.error && e.message || e);

_model.trigger ("error") ;

Removing Friend Relationships from a User

This function can take multiple user IDs that will be removed from the relationship with the
current user. The function determines its parameters by looking on the provided options
parameter of the function. This code is implemented to look for the user ids in the
options.data property. This function does not return a model, but only a success or failure.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS

case "delete":
Cloud.Friends.remove ({
user_ids : opts.data.user_ids.join(",")
}, function(e) {
Ti.API.debug (JSON.stringify(e)) ;
if (e.success) {
_model.meta = e.meta;
opts.success && opts.success ({});
_model.trigger ("fetch") ;

return;
Ti.API.error ("Cloud.Friends.remove: " + e);
opts.error && opts.error (e.error && e.message || e);

_model.trigger ("error") ;

I3F;

break;

Extending the User Model to Support
User-Specific Friends Functionality

Since the friends are associated in a relationship with a specific user, in this application you
will be extending the user object to provide the necessary function for utilizing the friends
objects you just created. This is about creating an application structure with objects that inter-
act like real world objects, meaning you will ask the user to provide a list of her friends, you
will ask a user to follow another user, and finally you will ask a user to un-follow another user.

You will create the corresponding function by extending the user object and use the Friend
object you just created. The process of extending a Alloy model is covered in previous chap-

ters, so the essential code is provided here only.

Since the getFollowers function will also be leveraged to support getFriends, you will
set the parameters such that the results are either followers or friends. To get the Appcelerator

Cloud Services function to return friends, you set the followers parameter to false.

Get the current user’s list of followers as a Friend collection; pass the current user’s ID,

this.id, in as the parameter for user_id.

getFollowers : function(callback, followers) {
var followers = Alloy.createCollection("Friend") ;
followers.fetch ({

data : {
per page : 100,

www.it-ebooks.info

213

http://www.it-ebooks.info/

214 BUILDING CROSS-PLATFORM APPS USING TITANIUM

a: " "
user id : this.id,
followers : followers || "true"
b
success : function(collection, _response) {
_callback && callback({
success : true,
collection : _collection
1)
b
error : function(model, response) { debugger;
_callback && callback({
success : false,
collection : {},
error : _response

To get the user’s friends, you just call the same function with the parameter set to false. You
can add the following function as a helper and to create some self-documenting code.

getFriends : function(_ callback) {
this.getFollowers(callback, false);

To follow a user and become the user’s friend, the Appcelerator Cloud Services method
requires the ID of the new friend, user_ids, which is provided as a model property along
with the approval required flag set to false. Additional information on the approval
required parameter can be found in the Appcelerator Cloud Services documentation.

followUser : function(userid, _callback) ({
// create properties for friend

var friendItem =
"user ids" : _userid,
"approval required" : "false"

}i

var friendItemModel = Alloy.createModel ('Friend') ;
friendItemModel.save (friendItem,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS 215

success : function(model, _response) {
_callback ({
success : true
1)
b
error : function(model, _response) {
_callback ({

success : false

To un-follow a user and end the friend relationship, the Appcelerator Cloud Services method
requires the ID of the friend to be removed, user ids, which is provided as an options.
data property.

unFollowUser : function(userid, _callback) ({

var friendItemModel = Alloy.createModel ('Friend') ;

// MUST set the id so Backbone will trigger the delete event
friendItemModel.id = _userid;

// destroy/delete the model
friendItemModel .destroy ({

data : {
"user ids" : [userid]
b
success : function(model, _response) {
_callback ({
success : true
3N
b
error : function(model, _response) {
_callback ({
success : false

www.it-ebooks.info

http://www.it-ebooks.info/

216

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Now that the models are all created and you can create friend relationships and you have
extended the user object so the code flows in a more natural manner, you can now start the
final step, which is to bind the data to the user interface.

Integrating ListView Data-Binding
with Friends Collections

With the features of Backbone and Alloy, you can easily keep the user interface synchronized
with the data models through binding the data to the view. Earlier in the chapter, you created
the basic ListView, which you will now bind to a list of users for the application users to
select as someone to follow, a list of followers for the user to see, and a list of followers for
the user to select and un-follow.

Revisiting the friends.xml File

Since you are going to bind this view to a collection of users, you need to create a local
instance of the collection; in this example you create that in the friends.xml by adding
this line of code right after the Alloy opening tag:

<Collection src="user" instance="true" id="friendUserCollection">

Now when the application instantiates this view/controller combination, a user collection
named friendUserCollection will be created automatically. This collection must be cre-
ated immediately since in the current implementation of Alloy; the view is rendered before
any user functions are executed and the bound collection for the view must exist.

The next change is to bind that collection to the Titanium.UI.ListSection; remember
the section will be displayed in the Titanium.UI.ListView so the contents will be visible
when the view is rendered.

Finally, you need to bind the model objects from the friendUserCollection to the spe-
cific Titanium.UI.ListSectionin the Titanium.UI.ListView; basically each model
in the collection will be represented as an individual Titanium.UI.ListItem.

Here is the complete code for the updated ListSection:

<ListSection id="section" dataCollection="$.friendUserCollection"
dataTransform="doTransform"
dataFilter="doFilter">
<ListItem template="{template}"
userName:text="{title}"

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS

userAvatar:image="{image}"
modelId="{modelId}"/>
</ListSection>

The dataCollection attribute is the name of the variable, $. friendUserCollection,
which holds the collection to be rendered in the view.

The dataTransformand dataFilter functions are added to the controller to modify the
model object that is passed to the Titanium.UI.ListItem as a JavaScript object and the
dataFilter is used to filter the collection of objects that is rendered in the view. These are
optional functions; however, you will be utilizing both functions in the updated friends.
js controller code.

The Titanium.UI.ListItem has the properties that actually bind the model’s attributes
to the list to be rendered. Notice that the attribute names match the bindId property values
that were specified in the templates you created in the first section on working with the
friends.xml view. The attributes in the curly braces map to the model attributes that are
provided by the collection, which is in turn bound to the view.

Integrating ListView Data-Binding
with the Friends Controller

Back to the controller to fill in the stubs you created earlier in the chapter, there were three
primary views—All Users, All Friends, and All Followers. This section begins with All Users.

When this view is first displayed, it will show all of the users in the system who you are not
following. So the first step is to get the list of users you are following and then get all of the
users. The initialization code for the friends.js controller is listed next, and it’s called
when the view gets focus.

function initialize()
$.filter.index = 0;

Alloy.Globals. opts.showIndicator ("Loading...");

updateFollowersFriendsLists (function() {
Alloy.Globals.PW.hideIndicator() ;

// get the users
$.collectionType = "fulllItem";

www.it-ebooks.info

217

http://www.it-ebooks.info/

218 BUILDING CROSS-PLATFORM APPS USING TITANIUM

getAllUsersExceptFriends () ;
P
}i

You need to fetch the content when the view gains focus not on open, so you create this
event listener for the controller. You also specify the $.collectionType variable so the
Titanium.UI.ListView knows which template to use when rendering the list.

S.getView () .addEventListener ("focus", function() {
!$.initialized && initialize();
$.initialized = true

)

Displaying All Users

The method to support finding all users in called getAl1UsersExceptFriends, which
will do exactly what it says, but it requires some help. We need a list of the user IDs of the
current user’s friends so they can be excluded from the collection; that can be accomplished
with the function updateFollowersFriendsLists.

updateFollowersFriendsLists gets the list of friends and followers and then using the
underscore _.pluck method removes just the user IDs and saves them in an location array
S.followersIdList.

function updateFollowersFriendsLists(callback) ({
var currentUser = Alloy.Globals.currentUser;

// get the followers/friends id for the current user
currentUser.getFollowers (function(_resp) {
if (_resp.success) ({
$.followersIdList =
__.pluck(resp.collection.models, "id");

// get the friends
currentUser.getFriends (function(resp) {

if (_resp.success)
$.friendsIdList =
_.pluck(resp.collection.models, "id");
} else {

alert ("Error updating friends and followers") ;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS 219

_callback() ;

1)
} else {
alert ("Error updating friends and followers") ;

_callback() ;
1)

Now you have the list of IDs to exclude from the all users list, since this is just the list of people
you are not already following, you need to construct a query for the friendUserCollection
collection to make this happen. Notice the use of the Appcelerator Cloud Services where query
functionality to exclude the user IDs that match the [Ds in the provided array.

function getAllUsersExceptFriends () {
var where params = null;

// which template to use when rendering listView
$.collectionType = "fullItem";

Alloy.Globals.PW.showIndicator ("Loading Users...");

// remove all items from the collection
$.friendUserCollection.reset () ;

if ($.friendsIdList.length)
// set up where parameters using the $.friendsIdList
// from the updateFollowersFriendsLists function call

var where params = {
noign . {
"$nin" : $.friendsIdList, // means NOT IN

b
}i

// set the where params on the query
$.friendUserCollection. fetch ({
data : {
per_page : 100,
order : '-last name',
where : where params && JSON.stringify(where params),

www.it-ebooks.info

http://www.it-ebooks.info/

220

BUILDING CROSS-PLATFORM APPS USING TITANIUM

success : function() {
// user collection is updated into
// $.friendUserCollection variable
Alloy.Globals.PW.hideIndicator () ;

b

error : function() {
Alloy.Globals.PW.hideIndicator () ;
alert ("Error Loading Users") ;

3K

The last step to get the binding working is to create the doFilter and doTransform func-
tions you specified in the view.xml file. You can start with the doFilter function since it
is pretty straightforward. You do not want to display yourself or the admin accounts in any
of the views so filter the collection and extract users with your ID and end user object that
comes back as an admin.

function doFilter(collection) ({
return collection.filter (function(_ i) {

var attrs = i.attributes;
return ((i.id !== Alloy.Globals.currentUser.id) &&
(attrs.admin === "false" || !attrs.admin));

)
¥

Next for the dataTransform, you need to return an object with the properties that match
the values specified in the curly braces from the ListSection in view.xml. So here you
will transform the data from the original model in the collection into a JavaScript object
containing the appropriate properties to match the user interface and pass the object,
modelParams as the return. See Figures 8-3 and 8-4.

function doTransform(model) {
var displayName, image, user = model.toJdSON() ;

// get the photo
if (user.photo && user.photo.urls) {
image = user.photo.urls.square 75 ||
user.photo.urls.thumb 100 ||
user.photo.urls.original ||
"missing.gif";
} else {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS 221

image = "missing.gif";

// get the display name

if (user.first name || user.last name) {
displayName =
(user.first name || "") + " " + (user.last name || "");
} else {

displayName = user.email;

// return the object

var modelParams =
title : displayName,
image : image,

modelId : user.id,
template : $.collectionType

Vi

return modelParams;

Displaying the Friends List
This is a straightforward call to the get Friends method added to the extended user model.

It will return a list of user objects that will be assigned to the $. friendUserCollection
collection.

This assignment will trigger the data binding to update the Titanium.UI.ListView and
display the friends. Also notice the assignment of the collectionType that will control
the template user to display the list items.

function loadFriends(callback)
var user = Alloy.Globals.currentUser;

Alloy.Globals.PW.showIndicator ("Loading Friends...");

user.getFriends (function(resp) {
if (_resp.success) {
if (_resp.collection.models.length === 0) {
$.friendUserCollection.reset () ;
} else {

www.it-ebooks.info

http://www.it-ebooks.info/

222 BUILDING CROSS-PLATFORM APPS USING TITANIUM

$.collectionType = "friends";
$.friendUserCollection.reset (resp.collection.models) ;
$.friendUserCollection.trigger ("sync") ;

}
} else {

alert ("Error loading followers") ;
}
Alloy.Globals.PW.hideIndicator () ;
_callback && _callback() ;

FRIENDS SETTINGS
aaron saunders Follow
L) (] =

FIGURE 8-3: The i0S version of the basic user list view that is used for displaying users, friends,
and followers.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS

Carrier 7:27 PM

Friends

Users

bryce saunders Follow

Friends

FIGURE 8-4: The Android version of the basic user list view that is used for displaying users, friends,

and followers.

Working with User and Friends Lists

When selecting a user from the all users list to add as a friend, you will be following the event
handler pattern that should be familiar to you by now, with a slight change for list views. At
the time of the writing of this book, Titanium.UI.ListView must have the event handler
defined in view.xml and not in the controller. So if you remember from earlier in this chap-
ter, you added the onClick attribute to the button in the Titanium.UI.ItemTemplate
in the Titanium.UI.ListView.

www.it-ebooks.info

223

http://www.it-ebooks.info/

224 BUILDING CROSS-PLATFORM APPS USING TITANIUM

The following code responds to the click on the button and calls the function followUser that
was added to the extended user model to create a friend relationship between two users. The
function will add the selected user to the current user’s friend’s list. When the call is completed
successtully you then call the function updateFollowersFriendsLists to update the cur-
rent list of friends and followers so you have the proper list of user IDs to exclude from the lists.
Remember you do not want to display users in the list who are already friends. After the function
completes, you then need to update $.friendUserCollection by calling getAllUsers
ExceptFriends. Since you used data binding, as soon as the $. friendUserCollectionis
updated, the application will respond to the updated event and update the user interface for you.

Replace the method stub for followBtnClicked in friends. js controller file with this code:
function followBtnClicked(_ event) {
Alloy.Globals.PW.showIndicator ("Updating User") ;

var currentUser = Alloy.Globals.currentUser;
var selUser = getModelFromSelectedRow (_event) ;

currentUser.followUser (selUser.model.id, function(_ resp) ({
if (_resp.success) {

// update the lists IF it was successful
updateFollowersFriendsLists (function() {

// update the UI to reflect the change
getAllUsersExceptFriends (function() {
Alloy.Globals.PW.hideIndicator () ;
alert ("You are now following " + selUser.displayName) ;
i
i
} else {
alert ("Error trying to follow " + selUser.displayName) ;

}

Alloy.Globals.PW.hideIndicator () ;

3K

_event.cancelBubble = true;

}i

The helper function getModelFromSelectedRow used in the previous code encapsulates
functionality needed to get the model and the specific display name from a list element. Using

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS 225

the model . id specified in the model transformation function and added as an attribute on
each Titanium.UI.ListItem,you can then doalocal query on the collection to get the entire
model object. The function returns the model and the display name to be displayed in the list.

function getModelFromSelectedRow (_event) {
var item = _event.section.items[event.itemIndex];
var selectedUserId = item.properties.modelId;
return {
model : $.friendUserCollection.get (selectedUserId),
displayName : item.userName.text,

bi

Figure 8-5 shows the alert that tells users they are now following a new friend.

You are now following aaron

saunders

FIGURE 8-5: The Android version of the alert.

www.it-ebooks.info

http://www.it-ebooks.info/

226 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Removing a Friend from the Friends List

To remove a user from the current user’s friends list, you will use the functions previously
added to the user object to call the underlying methods on the friends object. Utilizing the
helper method to get the model from the row that was clicked, you then pass that ID to
the unfollowUser function. If the function executes successfully, you will need to update
the local variable holding the friendsList since that is required for the proper filtering
of the display and then finally call 1loadFriends to reset the $.friendUserCollection
and trigger the data binding to update the view.

function followingBtnClicked(event) {
Alloy.Globals.PW.showIndicator ("Updating User") ;

var currentUser = Alloy.Globals.currentUser;
var selUser = getModelFromSelectedRow (_ event) ;

currentUser.unFollowUser (selUser.model.id, function(resp)
if (_resp.success) {
// update the lists
updateFollowersFriendsLists (function() {

// update the UI to reflect the change
loadFriends (function()
Alloy.Globals.PW.hideIndicator () ;
alert ("You're no longer following " +
selUser.displayName) ;

)
)

} else {
alert ("Error unfollowing " + selUser.displayName) ;

}

Alloy.Globals.PW.hideIndicator () ;

)

_event.cancelBubble = true;

bi

At this point, you should have completed all of the functions associated with the filter
Clicked event handler so when the user is running the application, he can toggle between
various user lists and followers.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 WORKING WITH FRIENDS AND FOLLOWERS

You can also experiment with following users and then unfollowing them to see how the user
interface performs.

Updating the Application to Be
Friend- and Location-Aware

These additional functions are added to personalize the user’s experience with the applica-
tion. Since you have now added the ability to select friends; you will now only show photos in
the feed from the friends or from the current user.

The code searches for photos except for the inclusion of the user.getFriends method,
which gets the current user’s friends list. This list of user IDs is needed to add to the collec-
tion query’s where clause to ensure only photos from the current user and the user’s friends
are included.

Updated function to add to the photo. js model file included here; be sure to add the code
to the collection and not the model:

findMyPhotosAndWhoIFollow : function(user, options) ({
var collection = this;

// get all of the current users friends
_user.getFriends (function(resp) {
if (_resp.success) {

// pluck the user ids and add current users id
var idList = _.pluck(resp.collection.models, "id");
idList.push(user.id) ;

// set up where parameters using the user list
var where params = {
"user id" : {
"S$in" : idList
b
title : {
"Sexists" : true
}
i
// set the where params on the query
_options.data = options.data || {};
_options.data.order = '-created at';

www.it-ebooks.info

227

http://www.it-ebooks.info/

228

BUILDING CROSS-PLATFORM APPS USING TITANIUM

_options.data.per page = 25;
_options.data.where = JSON.stringify(where params) ;

// execute the query
collection.fetch(options) ;
} else {
Ti.API.error ('Error fetching friends');
_options.error() ;

3K
I

Summary

This chapter covered a lot of material around the data-view binding, which is a powerful con-
cept that you should be aware of when creating your applications. The underlying Backbone.
js event functionality is an important concept, so you are encouraged to review the Backbone
documentation along with the Appcelerator Alloy documentation.

The Titanium.UI.ListView is a must-use in most situations because of the performance
gains. At the time of writing this book, Titanium.UI.ListView hasbeen recently released
and there are still issues being resolved. However, it should not stop you from starting with
Titanium.UI.ListView anyplace youwould normallyusea Titanium.UI.TableView.

Appcelerator Cloud Services pre-built objects once again save a lot of time by providing func-
tionality out of the box. In this example you implemented two-way friends with no approval
required. The Appcelerator Cloud Services API allows for you to create friend relationships
that require an approval. All of the functions are there for you to use; take a look at the docu-
mentation to see if there is a better fit for your implementation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter
Working with Maps
and Locations

APPCELERATOR TITANIUM PROVIDES excellent support for most of your geolocation
needs. This is not the complete demonstration of the functionality, but serves as more of an
introduction. You should review the documentation provided on the website; the wiki has a
separate section on using geolocation. Also review the Q&A forums, where you might find
that someone has run into the same problem you are facing and the community has pro-
vided a solution.

See http://docs.appcelerator.com/titanium/latest/#!/guide/Location
Services for more information.

Associating GPS Information When Saving a Photo

Associating GPS information when you're saving a photo involves the following steps, which
are outlined in the following sections:

m Modifying the photo model

m Getting GPS information from a device

m Creating a Commonds library for geolocation

m Updating the feed controller to add location to a photo

Modifying the Photo Model

No changes are required to the photo model to support saving geolocation information with
the object. Appcelerator Cloud Services provides custom fields for storing this information.
The way you have implemented the photo model allows for additional fields to be passed as
parameters to the Save method of the photo model. That is the only change that’s required.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/guide/Location_Services
http://docs.appcelerator.com/titanium/latest/#!/guide/Location_Services
http://www.it-ebooks.info/

230

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Getting GPS Information from a Device

To get geolocation information from the device, Appcelerator has provided a fair bit of func-
tionality out of the box in its location services library. You will be integrating the Ti.
Geolocation library with your app to get the user’s location. This location will be saved
with the photo when the user takes the photo. You will use the function once again when you
need to find the user’s current location in order to display photos near the user.

Since you will be utilizing this functionality in multiple places in the application, it is a good
example of where you can integrate a Commonds library for geolocation-related functionality.

Creating a Common]JS Library for Geolocation

You need to create a new file called geo.js and save it in the folder called 1ib. The 1ib
folder should be inside of the app folder in the project directory.

In the geo. js file you create a function called getCurrentLocation with one parameter,
which is a callback. This is the method that will be called when the device completes the
request for the current location. If the request is successful, the current geo-coordinates will
be returned as a JSON object, similar to the following code:

{

"accuracy": 100,

"altitude": 0,
"altitudeAccuracy": null,
"heading": 0,

"latitude": 40.493781233333333,
"longitude": -80.056671
"speed": 0,

"timestamp": 1318426498331

In the locationCallbackHandler function, you want to have your code handle error
conditions properly. In order to do that, you will check for the callback returning the location
object since that is where you will find the latitude and longitude coordinates. The check first
makes sure there was no error from location services, and then checks the location and the
location coordinates object for values. If no values are found, an error is returned and the
_location object is set to null.

Here is the code for the locationCallbackHandler. This code will be called whenever
the device generates a location event.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS

function locationCallbackHandler (location)
// remove event handler since event was received
Ti.Geolocation.removeEventListener ('location’',
locationCallbackHandler) ;
if (! location.error && _location && _location.coords) {

var lat, 1ng;

lat = _location.coords.latitude;
Ing = _location.coords.longitude;

reverseGeocoder (lat, 1lng, function(title) {
locationCallback ({

coords : _location.coords,
title : _title
}, null);

locationCallback = null;
1)
} else {
alert ('Location Services Error: ' + _location.error);
_callback(null, location.error);

}

Along with the latitude and longitude values from the device, you can also retrieve a more
descriptive name of the location. The Appcelerator framework provides a function for reverse
geolocation lookup. You provide the function with the coordinates and it will return a list of
locations that match the coordinates. The following code incorporates this functionality so you
will have both the coordinates and a descriptive name of the location to save with the photo.

The geolocation function incorporating the reverse lookup is listed next. The function will
return a JavaScript object in the callback containing the geo-coordinates and a title string for
the location. These values are used when saving the photo.

Here is the reverse geolocation function code that should be added to geo. js:

function reverseGeocoder(lat, _1lng, _callback) {
var title;

Ti.Geolocation.purpose = "Wiley Alloy App Demo";

www.it-ebooks.info

231

http://www.it-ebooks.info/

232

BUILDING CROSS-PLATFORM APPS USING TITANIUM

// callback method converting lat lng into a location/address
Ti.Geolocation.reverseGeocoder (lat, _1ng, function(data) ({
if (_data.success) {

Ti.API.debug("reverseGeo "+JSON.stringify(data, null, 2));

var place = data.places|[0];
if (place.city === "") {
title = place.address;
} else {
title = place.street + " " + place.city;
}
} else {
title = "No Address Found: " + _lat + ", " + _1lng;
}
_callback(title);

3K

In the latest version of Appcelerator, the geolocation module has been updated to support
better information when running on the Android OS. To get the customized functionality
you will need to use the Titanium.Geolocation.Android. There is additional informa-
tion available on the Appcelerator documentation site at http://docs.appcelerator.
com/titanium/3.0/#!/api/Titanium.Geolocation.Android.

The getCurrentLocation function in geo.js is in the next code snippet. Notice the
exports in the beginning of the function name; they allow you to call the library function
when you require the library elsewhere in your code.

This function will create the location event listener that will respond to the device providing
the GPS data. The callback handler mentioned previously will process the data and do the
reverse geo lookup for additional information on the photo’s location.

Add this code to geo. js:

exports.getCurrentLocation = function(callback) ({

if (!Ti.Geolocation.getLocationServicesEnabled())
alert ('Location Services are not enabled') ;
_callback(null, 'Location Services are not enabled');
return;

www.it-ebooks.info

http://docs.appcelerator.com/titanium/3.0/#!/api/Titanium.Geolocation.Android
http://docs.appcelerator.com/titanium/3.0/#!/api/Titanium.Geolocation.Android
http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS

// save in global for use in locationCallbackHandler

locationCallback = _callback;

Ti.Geolocation.purpose = "Wiley Alloy App Demo";

Ti.Geolocation.accuracy = Ti.Geolocation.ACCURACY HIGH;

Ti.Geolocation.distanceFilter = 10;
Ti.Geolocation.addEventListener ('location',

locationCallbackHandler) ;

i

Be sure to add the global variable locationCallback to the top of the file also.

Here’s an example callback response object:

{

"coords": {
"timestamp": 1374430154064,
"altitude": O,

"speed": -1,
"latitude": 38.35954666137695,
"longitude": -75.07244873046875,
"accuracy": 5,
"altitudeAccuracy": -1,
"heading": -1
b
"title": "31st Street, Ocean Bay City, Maryland,

Updating the Feed Controller
to Add Location to a Photo

The feed controller will now need to update the process image function and pass the geoloca-
tion information to the photo model when it is saved. This information will be saved with the

21842"

other the information when the photo is saved to Appcelerator Cloud Services.

The change you will make to the feed. js is to first include the new geo library you created

by adding the require line to the beginning of the file.

// load Geolocation library
var geo = require("geo") ;

www.it-ebooks.info

233

http://www.it-ebooks.info/

234 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Now that the library is accessible in feed.js, you can call the method to get the current
location. Remember that since it is an asynchronous call, you must place the process image
functionality inside the getCurrentLocation callback.

Since there is a possibility of the get CurrentLocation function not being able to success-
fully return _coords, you must account for the error condition in the code. In this case, you
will allow for the image to be saved without the _coords field set, but you must check for
the condition here. You will check for it later when attempting to display the location of the
image in the map view.

function processImage (mediaObject, callback) ({

geo.getCurrentLocation (function(coords) ({

var parameters = {
"photo" : mediaObject,
"title" : "Sample Photo " + new Date(),
"photo_sizes[preview]" : "200x200#",
"photo_sizes[iphone]" : "320x320#",

// Since we are showing the image immediately
"photo sync sizes[]" : "preview",

}i

// 1f we got a location, then set it
if (_coords) f{
parameters.custom fields = {
coordinates : [_coords.coords.longitude,
__coords.coords.latitudel],
location string : _coords.title

}i

var photo = Alloy.createModel ('Photo', parameters) ;

photo.save ({}, {

success : function(model, _response) {
Ti.API.debug('success: ' + model.toJSON()) ;
_callback ({
model : model,

message : null,
success : true
P i
b

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS

error : function(e) { debugger;
Ti.API.error ('error: ' + e.message);
_callback ({
model : parameters,
message : e.messagde,
success : false

The new function takes the coords parameter and passes the values as custom fields to the
Appcelerator Cloud Services photo object. Appcelerator Cloud Services supports geolocation
queries against photo objects so you can find photos using this information stored in the
custom fields of the photo. See the Appcelerator Cloud Services for additional information
on custom fields at http://docs.appcelerator.com/cloud/latest/#!/guide/
customfields-section-5.

Displaying the Photo Location on a Map

Create the . js controller choosing File & New = Alloy Controller from the context menu.
Add the code to the mapview. js file. You will display a thumbnail of the photo along with
the tile and the location of the image in the header.

You can see that the code takes the args . photo object that is passed and gets the appropri-
ate properties from the object to display in the user interface. You use the predefined image
transformation “preview” from Appcelerator Cloud Services and the custom_fields saved
with the object to provide an informative display.

You will need the proper layout information included in the style file for the application to
create the proper user interface.

Android Support for Google Maps v2

To include support for the new Google Maps in your Android project, you need to follow the
directions here on the Appcelerator website on updating your tiapp.xml configuration
after setting up the Google service. See http://docs.appcelerator.com/titanium/
latest/#!/guide/Google Maps_ v2 for Android.

After those changes are made you need to add the map module to your project in tiapp.
xml. Add the module to the project the same way you added the Facebook module.

www.it-ebooks.info

235

http://docs.appcelerator.com/cloud/latest/#!/guide/customfields-section-5
http://docs.appcelerator.com/cloud/latest/#!/guide/customfields-section-5
http://docs.appcelerator.com/titanium/latest/#!/guide/Google_Maps_v2_for_Android
http://docs.appcelerator.com/titanium/latest/#!/guide/Google_Maps_v2_for_Android
http://www.it-ebooks.info/

236

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Create the global map object that you will use in this section by adding the following line to
the bottom of alloy.js

Alloy.Globals.Map = require(’ti.map’);
Add this code to the new controller file you created in mapView. js:
var args = arguments[0] || {};

// get the photo object from the parameters

var coords = args.photo.get ("custom fields") .coordinates[0];
var locationString = args.photo.get ("custom fields").location
string;

// create annotation
var annotation = Alloy.Globals.Map.createAnnotation ({
latitude : Number (coords[1]),
longitude : Number (coords[0]),
title : args.photo.get("title"),
subtitle : locationString,
myid : args.photo.id
//leftview : imageView,
// animate : true
I3
// set the header
$.thumb.image = args.photo.get ("urls") ["preview"];
$.title.text = args.photo.get("title");
$.location.text = locationString;

// add them to map
$.mapview.setAnnotations ([annotationl]) ;

// set the region around the photo
$.mapview.setRegion ({
latitude : annotation.latitude,
longitude : annotation.longitude,
latitudeDelta : 0.040,
longitudeDelta : 0.040

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS 237

Android Support for ActionBar in MapView
Since you are building a cross-platform solution, additional changes are required to support
the Android back button and the ActionBar/Title Bar on the Android OS.

The code you need to add will handle the user clicking on the back button; add this code to
the end of the mapView. js controller file:

// detect click on back button
$.getView () .addEventListener ("androidback",
androidBackEventHandler) ;

// handle the event and close the window
function androidBackEventHandler (_event) {
_event.cancelBubble = true;
_event .bubbles = false;
$.getView () .removeEventListener ("androidback",
androidBackEventHandler) ;
$.getView() .close () ;

To get the application to properly respond to a click on a menu icon to go back in the applica-
tion, add this code to the end of the mapView. js controller file:

$.getView () .addEventListener ("open", function/() {
OS_ANDROID && ($.getView().activity.onCreateOptionsMenu =
function() {
var actionBar = $.getView() .activity.actionBar;

if (actionBar)
actionBar.displayHomeAsUp = true;
actionBar.onHomeIconItemSelected = function() {
$.getView () .removeEventListener ("androidback",
androidBackEventHandler) ;
$.getView() .close() ;

www.it-ebooks.info

http://www.it-ebooks.info/

238

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Adding the Map Component to MapView XML

The map view uses a different namespace than the standard Titanium modules so you need
to add the ns attribute to the XML element when placing it in the view file. You add a basic
window as the container for the map and place the map in the window. There is some basic
styling applied to the map object in the mapview. tss file.

You can also add text fields to provide more information, such as a title and location of
the photo.

<Alloy>
<Window id="mainWindow">
<View id="header"s>
<ImageView id="thumb"></ImageView>
<View id="textContainer" >
<Label id="title"s></Label>
<Label id="location"s></Label>

</Views>
</Views>
<View ns="Alloy.Globals.Map" id="mapview" ></View>
</Window>
</Alloy>

Here are the styles, which are added into mapview. tss for the layout of the map view and
the associated header information. The main objects are the map view and the header. The
header contains the thumb, the title, and the location that is laid out separately from the
map view.

"#mainWindow" : {
backgroundColor: "white",
title: "Location Detail",
top: "0dp",
layout: "vertical",
width: "100%",
height: "100%"

b

"#mapview" : {
width: "90%",
height: "290dp"
top: "5dp",
borderColor: "gray",
borderWidth: 1

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS

"#thumb" : {
top: '5Gdp',
width: '38dp’',
height: '38dp'

I
"#header" : {
width: "90%",
height: Ti.UI.SIZE,
layout: "horizontal"
I
T#title' :
top: '2dp',
left: '2dp',
width: Ti.UI.SIZE,
height: Ti.UI.SIZE,
textAlign: 'left',
font:
fontSize: '13dp'
}
b
"#location' :
top: '2dp',
left: '2dp',
width: Ti.UI.SIZE,
height: Ti.UI.SIZE,
textAlign: 'left',
font: {
fontSize: '10dp'
}
b
"#textContainer" :
left :"5dp",
width: Ti.UI.FILL,
height: Ti.UI.SIZE,
layout: "vertical"
}

The list of photos in the feed view did not originally contain a button to view the location of
the photo on the map. The following changes will add a button for the user to view a map.

<Alloy>

<TableViewRow id="row" row id=""»>

<View class="container">

www.it-ebooks.info

239

http://www.it-ebooks.info/

240

BUILDING CROSS-PLATFORM APPS USING TITANIUM

<Label id="titleLabel"s></Labels>

<View id="imageContainer"s>
<ImageView id="image"></ImageViews>

</Views

<View id="buttonContainer"s
<Button id="commentButton">Comment</Button>
<Button id="shareButton">Share</Button>
<Button id="locationButton">Location</Button>

</Views>

</Views>
</TableViewRow>
</Alloy>

Minor modifications to the feedRow.tss file are added to account for the new button
added. You will see that the button size has been adjusted to approximately 30% of the width
of the view, which allows for some spacing between the buttons. You will also need to adjust
the font size some so that the button titles appear propetrly in the windows.

"#commentButton" : {
width: '30%',
left: 'e6dp!',
height: '32dp'
I
"#shareButton" : {
left: 'e6dp’,
width: '30%',
height: '32dp'
}
"#locationButton" : {
left: '6dp',
width: '30%'
height: '32dp'
}
"#commentButton [platform=android] " : {
height : '42dp'
I
"#shareButton [platform=android] " : {
height : '42dp'
I
"#locationButton[platform=android]" : {
height : '42dp’

b

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS 241

Add another event listener to respond to the button click in the feed view. This button click
will execute the handler to display the map view. You add the following code to the feed.js
controller file.

// EVENT HANDLERS
function processTableClicks(event) { debugger;

if (_event.source.id === "commentButton") {
handleCommentButtonClicked(event) ;

} else if (_event.source.id === "locationButton") {
handlelLocationButtonClicked(event) ;

} else if (_event.source.id === "shareButton") {
alert ('Will do this later!!');

Now you'll add a handler to open the map view in response to the user clicking on the loca-
tion button when there is a location. Since there is the possibility that a location was not
saved when the photo was taken, you need to check the custom fields returned from the
photo for the coordinates object. If there is no field, the detail view with the map will not
be displayed and the user will be alerted.

function handleLocationButtonClicked(event) ({

var collection = Alloy.Collections.instance ("Photo") ;
var model = collection.get(event.row.row_ id) ;

var customFields = model.get ("custom fields");

if (customFields && customFields.coordinates) {
var mapController = Alloy.createController ("mapView", {
photo : model,
parentController : $

I3F;

// open the view
Alloy.Globals.openCurrentTabWindow (mapController.getView()) ;
} else {
alert ("No Location was Saved with Photo");

www.it-ebooks.info

http://www.it-ebooks.info/

242 BUILDING CROSS-PLATFORM APPS USING TITANIUM

If you run your application, you should see there are now three buttons on each row under
the photo. The new Location button has been added. If you clicked it right now it would dis-
play an alert saying that no location is found. Figures 9-1 and 9-2 show the new row and alert
in i0S and Android, respectively.

Carrier & 12:31 PM 1

Feed Camera

Sample Photo Mon May 26 2014
02:31:52 GMT-0400 (EDT)

Comment Share Location

.4

FIGURE 9-1: The new feedRow with a Location link on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS

AW 12:34PM
(O]

FRIENDS SETTINGS

Sample Photo Mon May 26 2014
02:31:52 GMT-0400 (EDT)

Sample Photo Sun May 25 2014
23:38:06 GMT-0400 (EDT)

FIGURE 9-2: The new feedRow with a Location button on Android.

Now take a photo on your device and wait for the view to update and display the new photo
on your feed list. After the photo appears on your feed list, click the Location button. You
should see a view of the map showing where the photo was just taken. The Location Detail
page should look similar to Figures 9-3 and 9-4.

www.it-ebooks.info

243

http://www.it-ebooks.info/

244 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Carrier & 12:55 PM
{ Feed Location Detail

Sample Photo Mon May 26 2014
W — 02:31:52 GMT-0400 (EDT)

= Buchanan Street Northwest Washington

Quackenbos St NW.

Kennedy StNW s
<

&

9
Upshur StNW

United States
Soldiers,
and Airmens‘Hon

16th StNW
MNISYIEL

FIGURE 9-3: Photo location detail view on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS 245

QxmayymE 7 d01257PM

() Location Detail

E Sample Photo Mon May 26 2014 02:31:52

9 GMT-0400 (EDT)

Buchanan Street Northwest Washington

Rock Creek Park
*

Sample Photo Mon May 26 2014 02:31:52
GMT-0400 (EDT)
Buchanan Street Northwest Washington

Manor Park

= - {g}r

=z IS

& &

e

5

it Petworth

Crestwood
= e
&
Smithsonian < +
National e Gardicw

Zoological Park

(@ RdNW 2
©26 GR35 Map data ©2014 Google

FIGURE 9-4: Photo location detail view on Android.

Displaying a Map of Photos Near Your Location

You have created a view that shows the location of the one photo on the map; the next feature
will show all of the photos in the existing list in a map view. This example will try to keep things
simple by just showing the first 25 images, but a more complex example could potentially
update the map view as the user scrolls into new regions and adds additional image locations.

www.it-ebooks.info

http://www.it-ebooks.info/

246

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Querying ACS Photo Objects Using
Your Current Location

Appcelerator Cloud Services provides support for geolocation-based queries on objects that
contain the custom_ field coordinates. Earlier in the chapter, you added that support to
the photos that were saved so you should have data ready to be queried.

You will need to update the photo model in photo. js with a custom function to execute this
query. This function could be incorporated in the feeds.js controller, but adding it to the
photo model separates the functionality by placing it in a more appropriate place. This also
allows for the query to be used in other places of the application without duplicating code. See
http://docs.appcelerator.com/cloud/latest/#!/guide/search query.

The new function will convert the distance parameter to radians since the Appcelerator
Cloud Services API needs the parameter converted. Finally, the function will execute the col-
lection’s fetch function to return the photos the desired distance from current location.

Add the following code to the photos.js model as a function to extend the collection
object. Be sure to add the code to the collection and not the model.

findPhotosNearMe :function(user, location, _distance, _options) {
var collection = this;

// convert distance to radians if provided
var distance = _distance ? (_distance / 3959) : 0.00126;
if (_location === null) {
_options.error ("Could Not Find Photos");
return;
}
// get all of the current users friends
_user.getFriends (function(_resp) {
if (_resp.success) { debugger;

var idList = _.pluck(_resp.collection.models, "id");
idList.push(user.id) ;

// first we get the current location

var coords = [];

coords.push(_ location.coords.longitude) ;

www.it-ebooks.info

http://docs.appcelerator.com/cloud/latest/#!/guide/search_query
http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS

coords.push(location.coords.latitude) ;

// set up where parameters
var where params = {
"user id" :
ninn : idList
I
"coordinates" : {
"SnearSphere" : coords,
"$maxDistance" : distance // 5 miles in
// radians

}
Vi
// set the where params on the query
_options.data = options.data || {};:
_options.data.per page = 25;
_options.data.where = JSON.stringify(where params) ;

// execute the query
collection.fetch(options) ;
} else {
_options.error ("Could Not Find Photos") ;
return;

I3F;

Remember to do the proper error-checking in case there is an issue getting the device’s current
location. The function does check to see if the location parameter is valid; otherwise, it

returns an error.

Updating the User Interface to Show a Map View

For the user interface, you will add a map view to the main feed tab and toggle the view
between a list of items and a map view showing the photos closest to your current location.

In the feed.xml view file you will add a section for the tabbed button on iOS, which will be
used to toggle between the two views. This code should be added directly above the location
in the file where the table view is created.

www.it-ebooks.info

247

http://www.it-ebooks.info/

248 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Since you are building a cross-platform solution, you need to account for the differences between
i0S and Android devices. The following code is added to support the selection of the view to be
either the list of photos or the map view of the photos closest to the current location.

<View id="filterContainer" >
<TabbedBar id="filter" platform="ios" >
<Labelss>
<LabelsList</Label>
<Label>Map</Label>
</Labels>
</TabbedBar>
</Views>

Now for Android support, you use the Picker control, adding it to the same filter
Container element just below the iOS TabbedBar control. After the Android or iOS code
is added, the filterContainer should look similar to the following code.

<View id="filterContainer" >
<TabbedBar id="filter" platform="ios">
<Labelss>
<Label s>List</Labels>
<Label >Map</Label>
</Labels>
</TabbedBar>
<View id="androidPickerContainer" platform="android"s>
<Picker id="filter" selectionIndicator="true">
<PickerColumn id="columnl">
<PickerRow title="List"/>
<PickerRow title="Map"/>
</PickerColumns>
</Pickers>
</Views>
</Views>

You will need to add the associated changes to the feed.tss file to properly layout the
tabbedbar on the feedWindow. You are laying out these larger view objects vertically so
they will appear in the screen from top to bottom.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS

"#feedWindow" : {
layout: "vertical"

b

"#filterContainer" : {
top: "5dp",
height: Ti.UI.SIZE,
width: "70%"

b

"#filter [platform=ios]" : {
style: Ti.UI.iPhone.SystemButtonStyle.BAR,
height: 30,

width: "70%"

}

"#filter [platform=android]l" : {
height: "38dp",
width: "70%"

b

'#androidPickerContainer' :
height: Ti.UI.SIZE,
width: Ti.UI.SIZE,
backgroundColor : '#A3A3A3'

b

"#mapview" : {
width: "90%",
height: Ti.UI.FILL,
top: "5dp",
bottom: "5dp",
borderColor: "gray",
borderWidth: 1,
visible: false

b

"#feedTable" : {
width: Ti.UI.FILL,
height: Ti.UI.FILL

www.it-ebooks.info

249

http://www.it-ebooks.info/

250

BUILDING CROSS-PLATFORM APPS USING TITANIUM

The map view will be shown when the user selects the item on the tabbedBar by hiding the
tableView and showing the map view. The tableView will be displayed when the user
clicks the list item on the tabbedBar. See Figures 9-5 and 9-6.

Carrier & 1:02 PM

Feed

List Map

Sample Photo Mon May 26 2014
02:31:52 GMT-0400 (EDT)

Comment Share Location

FIGURE 9-5: The new tabbed button on an iOS screen.

The feed.xml view will be changed to place both the tableview and the mapView on top of
one another on the view. You will need to replace the code in the feed.xml file where the
table is currently created, and replace it with the following code.

<View id="viewContainer"s>

<TableView id="feedTable"></TableViews>

<View ns="Alloy.Globals.Map" id="mapview" ></View>
</Views

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS

AW 12:34PM
(O]

FRIENDS SETTINGS

Sample Photo Mon May 26 2014
02:31:52 GMT-0400 (EDT)

Sample Photo Sun May 25 2014
23:38:06 GMT-0400 (EDT)

FIGURE 9-6: The new picker on an Android screen.

Changes in the feed.js Controller

The controller will have quite a few changes, but they are pretty straightforward and similar
to code you have written already. First, you need to create the listener, handler pair to
respond to the click on the tabbedBar buttons or to the UI.Picker on Android that you
added in the feed.xml view.

$.filter.addEventListener(OS_IOS ? 'click':'change',
filterTabbedBarClicked) ;

www.it-ebooks.info

251

http://www.it-ebooks.info/

252

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Next is the handler function, where the filterTabbedBarClicked method is passed
an event object that contains the index of the button item clicked in the tabbedBar or
the rowIndex of the item clicked in the UI.Picker. You will then use the value called
itemSelected to take the appropriate action and update the user interface by showing
either the map view or the list view.

function filterTabbedBarClicked(event) {
var itemSelected = OS_IOS ? _event.index : _event.rowIndex;
switch (itemSelected) ({
case 0
// List View Display

$.mapview.visible = false;
$.feedTable.visible = true;
break;

case 1

// Map View Display
$.feedTable.visible = false;
$.mapview.visible = true;
showLocalImages () ;

break;

You have seen the functions used to display the list view from earlier in the book; now you
will add two functions to the feed. js controller to display the same information in a map
view relative to the current location of the user.

The first function you will create is showLocalImages. This function will call the extended
method you added to the photo model to find all images within a specified distance from
the user. The method follows the familiar pattern of creating the collection, setting the query
parameters, and then handling the success or error conditions. Add the following function to
the feed. js controller file:

function showLocalImages () {
// create new photo collection
$.locationCollection = Alloy.createCollection('photo');
// find all photos within five miles of current location
geo.getCurrentLocation (function(coords) {

var user = Alloy.Globals.currentUser;

$.locationCollection.findPhotosNearMe (user, coords, 5, {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS

success : function(collection, _response) {
Ti.API.info(JSON.stringify(collection)) ;

// add the annotations/map pins to map
if (_collection.models.length) {
addPhotosToMap (_collection) ;
} else {
alert ("No Local Images Found") ;
filterTabbedBarClicked ({
index : O,
rowIndex : O,

3N

if (OS_ANDROID) ({
$.filter.setSelectedRow (0, 0, false);
} else {
$.filter.setIndex(0) ;

}

b

error : function(error) {
alert ('Error loading Feed ' + e.message) ;
Ti.API.error (JSON.stringify(error)) ;

If the query is successful, the response will be a collection of images, which will be passed to
the next function called addPhotosToMap. This function will use the geo-coordinates in the
photo model to create map annotations to place on the map. The use of these Appcelerator
Framework API calls for map functionality should be familiar by now. There is one difference
in that now you will create an array of annotations and place them all on the map at once.

function addPhotosToMap (collection) ({
var annotationArray = [];
var lastlLat;

// remove all annotations from map
$.mapview.removeAllAnnotations () ;

var annotationRightButton = function() ({

www.it-ebooks.info

253

http://www.it-ebooks.info/

254

}i

BUILDING CROSS-PLATFORM APPS USING TITANIUM

var button = Ti.UI.createButton ({
title : "X",

)

return button;

for (var i in collection.models) {

var mapData = _collection.models[i].toJSON() ;

var coords = mapData.custom fields.coordinates;

var annotation = Alloy.Globals.Map.createAnnotation ({
latitude : Number (coords[0] [1]),
longitude : Number (coords[0] [0]),
subtitle : mapData.custom_fields.location_ string,
title : mapData.title,
//animate : true,
data : _collection.models[i] .clone ()

)

if (0s_108) {
annotation.setPincolor (Alloy.Globals.Map.ANNOTATION RED) ;
annotation.setRightButton (Titanium.UI.iPhone.SystemButton.
DISCLOSURE) ;

} else {
annotation.setRightButton (annotationRightButton) ;

}

annotationArray.push (annotation) ;

// calculate the map region based on the annotations
var region = geo.calculateMapRegion (annotationArray) ;

$.

mapview.setRegion (region) ;

// add the annotations to the map

$.

mapview.setAnnotations (annotationArray) ;

You can see in this code that you are first ensuring there are no annotations on the map by
removing them all, and then creating an array of the new annotations to add to the map.

There is another helper function that was added to geo. j s library that calculates the region
of the map based on the annotations that are being added. See Figures 9-7 and 9-8 for the
end result.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS 255

Carrier ¥ 12:31 PM v .

Feed Camera

MN3IS YigL

MNIS WS

FIGURE 9-7: Map view with pins for local images on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/

256

BUILDING CROSS-PLATFORM APPS USING TITANIUM

W 12:35PM
FRIENDS SETTINGS
Galfatin STNW,
S
Farragut St NW 5
AF
Emerson St NW % {@Qw
o 9
£
e Decatur St NW
4
& :
= £ Crittenden St NW
<> () &
&9 g =
Ty C4 ‘B % A
R, %) v, o 5 2
g L et % 7,
5§ A . 2
0 = > % z
= = S\
= : 2
PETWORT =
ORTH z
Upshur St NW.
=
Taylor StNW § z
) (%]
\3 £
& ¥
S
Randolph St NW /{;QQ
<
Quincy St NW §
W
5 0 QuebeCP\N
5
(’_/'J —_—
= PARKVIEW | =
z ©2014 Google - Map data ©2014 Google

FIGURE 9-8: Map view with pins for local images on Android.

Responding to Clicks on Map Annotations

When the user clicks on the map annotations, you want to show a detail screen of the image
similar to what the user would see if the image was scrolled on the list view. It would be ideal
to reuse the code from the list view for this purpose.

Changes to feed. j s will require an additional event listener and handler pair to capture the
click on the map and the map annotation.

S .mapview.addEventListener ('click', mapAnnotationClicked) ;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS

Next is the function called mapAnnotationClicked, which responds to the event. In the
function, you will look for a click on the rightbutton of the map annotation to indicate
the user’s desire to show the details for the image represented by the map pin.

The click event function receives the event with the annotation object and a clicksource
property, which lets you know if the rightbutton was selected. If the rightbutton was
selected, you will open a new mapDetail.js controller and pass it the necessary informa-
tion for displaying and handling clicks in the window.

function mapAnnotationClicked(event) {
// get event properties
var annotation = _event.annotation;
//get the Myid from annotation
var clickSource = _event.clicksource;

var showDetails = false;

if (0s_108) {

showDetails = (clickSource === 'rightButton') ;
} else {
showDetails =
(clickSource === 'subtitle' || clickSource === 'title');

if (showDetails) {

// load the mapDetail controller

var mapDetailCtrl = Alloy.createController ('mapDetail',
photo : annotation.data,
parentController : S,
clickHandler : processTableClicks

13N

// open the view
Alloy.Globals.openCurrentTabWindow (mapDetailCtrl.getView()) ;

} else {
Ti.API.info('clickSource ' + clickSource) ;

www.it-ebooks.info

257

http://www.it-ebooks.info/

258

BUILDING CROSS-PLATFORM APPS USING TITANIUM

There is some interesting reuse of code here. Notice you are passing in the clickHandler
for the tableRow, processTableClicks. If you remember, the click handler for the table
row handles the clicks on the comment, share, and location buttons. In this map detail
view, the application needs to respond to those clicks and perform the appropriate actions.
The application will be reusing this functionality in the mapDetail controller by passing the
event object back to the parent controller to execute the proper actions for displaying com-
ments and sharing information on the photo.

For this to work properly, the application will need to be modified to handle the different
event objects that will be sent from the mapDetail view. The processTableClicks func-
tion passes control to the specific button handler based on the button ID; each of these func-
tions is changed to add a condition for detecting if the event came from the tableRow or if
it came from the mapDetail controller. If the click did not come from the tableRow, the
application will expect to find the event information in the data field as opposed to attempt-
ing to retrieve it from the collection on the page.

The changes to the feed. js controller handleCommentButtonClicked is listed here:

function handleCommentButtonClicked(event) {
var collection, model = null;

// handle call from mapDetail or feedRow

if (! _event.row) {
model = event.data;

} else {
collection = Alloy.Collections.instance ("Photo") ;
model = collection.get(event.row.row id);

var controller = Alloy.createController ("comment", {
photo : model,
parentController : $

)

// initialize the data in the view, load content
controller.initialize() ;

// open the view
Alloy.Globals.openCurrentTabWindow (controller.getView()) ;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS 259

Now you will create the new controller named mapDetail. Starting with the mapDetail.
xml view file, you will create the interface.

<Alloy>
<Window id="mainWindow" fullscreen="false" >
<View class="container"s>
<Label id="titleLabel"></Label>
<View id="imageContainer"s>
<ImageView id="image"></ImageView>
</View>
<View id="buttonContainer"s
<Button id="commentButton"s>Comment</Buttons>
<Button id="shareButton"s>Share</Buttons>
</View>
</View>
</Window>
</Alloy>

ThemapDetail. tss style file is very similar to the feedRow . t ss style except for the removal
of the location button since it is not needed in the map detail. See Figures 9-9 and 9-10.

'.container': {
layout: 'vertical',
width: '90%!'

b

"#buttonContainer':
layout: 'horizontal',
width: Ti.UI.FILL,
height: '42dp'

b

"#image':
top: '5dp',
left: '14dp',
width: '270dp',
height: '270dp'

I

'#imageContainer': {
width: '300dp',
height: '284dp'

b

'#commentButton': {
left: '26dp',
width: '40%',

www.it-ebooks.info

http://www.it-ebooks.info/

260 BUILDING CROSS-PLATFORM APPS USING TITANIUM

height: '32dp'

|

'#shareButton': {
left: '10dp’
width: '40%',
height: '32dp'

}

'#commentButton [platform=android] ': {
height: '42dp'

|

'#shareButton [platform=android] ': {
height: '42dp'

Carrier ¥ 12:32 PM 1]

Feed Camera

@

" Sample Photo Mon May 26 2@

Buchanan Street Northwest Washlngton

T STINWY

arragut StNW

Iy
5
A
2
=

MN3IS YigL

FIGURE 9-9: Selected pin on i0S; user expects to see detail when clicked.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS 261

B 12:37PMm

FRIENDS SETTINGS

Ingraham St NW.

Hamilton St NW.
Gallatin St NW.

Farragut St NW

>

Sample Photo Mon May 26 2014 02:31:52
GMT-0400 (EDT)

Buchanan Street Northwest Washington
? i Iy / 2 Critt
a & =h > [} 0
I =9 3 Z
o &, Buchanan StNW_ %
| e ‘2@ ® o
) 1, 2 R/
e %
® X o z = 9
o g 2! @
i = PETWORTH &
Upshur St NW.
>
Taylor St NW S
Randolph St NW. &
i\b —

Quincy St NW §
©2014 Google - Map data ©2014 Google

FIGURE 9-10: Selected pin on Android; user expects to see detail when clicked.

Creating the controller for mapDetail. js is very similar to the code used in feedRow. js
except for how the application will handle clicks events on the view. The application uses the
parameters passed in on creation of the controller to set the image and the labels appropri-
ately. The interesting code is how the events are handled on the view.

The eventListener assigned to the buttonContainer gets the model objects that were
passed into the view and adds them to the event object. The event object is then passed on to
the clickHander that was provided to the controller when it was created. This is the
clickHandler processTableClicks that was created in feed. js.

// Get the parameters passed into the controller

var parameters = arguments[0] || {};
var currentPhoto = parameters.photo || {};

www.it-ebooks.info

http://www.it-ebooks.info/

262 BUILDING CROSS-PLATFORM APPS USING TITANIUM

var parentController = parameters.parentController || {};

$.image.image = currentPhoto.attributes.urls.preview;
$.titlelLabel.text = currentPhoto.attributes.title || '';

// get comment count from object
var count = currentPhoto.attributes.reviews count !== undefined ?
currentPhoto.attributes.reviews count : 0;

// modify the button title to show the comment count
// 1f there are comments already associated to photo
if (count !== 0) {

$.commentButton.title = "Comments (" + count + ")";

$.buttonContainer.addEventListener ('click', function(event) {
// add the model information as data to event
_event.data = currentPhoto;
parameters.clickHandler (_event) ;

3K

$.getView () .addEventListener ("androidback",
androidBackEventHandler) ;

function androidBackEventHandler (_event) {
_event.cancelBubble = true;
_event.bubbles = false;
$.getView () .removeEventListener ("androidback",
androidBackEventHandler) ;
$S.getView() .close() ;

// Set up the menus and actionBar for Android if necessary
$.getView() .addEventListener ("open", function()
OS_ANDROID && ($.getView() .activity.onCreateOptionsMenu =
function()
var actionBar = $.getView() .activity.actionBar;
if (actionBar)
actionBar.displayHomeAsUp = true;
actionBar.onHomeIconItemSelected = function() {
$.getView () .removeEventListener ("androidback",
androidBackEventHandler) ;

www.it-ebooks.info

http://www.it-ebooks.info/

263

CHAPTER 9 WORKING WITH MAPS AND LOCATIONS

$.getView() .close() ;

The application should now display the map pins indicating where you or your friends took
pictures. Remember you will most likely need to take new photos on your device to get the

locations saved with the photos.

Once you click on the map annotations, the application should display a photo detail page
that looks similar to Figure 9-11 or 9-12, depending on your platform.

Carrier ¥ 12:32 PM

< Feed Photo Detail

Sample Photo Mon May 26 2014
02:31:52 GMT-0400 (EDT)

Comment

FIGURE 9-11: Detail view displayed when annotation is clicked on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/

264

BUILDING CROSS-PLATFORM APPS USING TITANIUM

=

QAeYNIME 3

1l 12:38PM

Lo, Photo Detail

Sample Photo Mon May 26 2014
02:31:52 GMT-0400 (EDT)

FIGURE 9-12: Detail view displayed when annotation is clicked on Android.

Summary

This chapter covered the integration of maps and geolocation. Location-aware applications
are well suited for mobile devices since the GPS is integrated into the operating system. The
combination of the ease of use provided by the Appcelerator Titanium map module and the
Appcelerator Cloud Services location-based queries open up tremendous possibilities of
what can be accomplished very quickly with the Appcelerator toolset.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

Sharing via Facebook,
Email, and Twitter

APPCELERATOR TITANIUM PROVIDES excellent support for sharing using the Facebook
module and also for sharing via email if it is properly configured on the device. There are more
options for sharing, specifically Twitter, but that is not currently incorporated into the frame-
work although there are various open source solutions to support that functionality.

In this chapter, you will integrate sharing to the Facebook wall, sharing the photo to the
user’s Facebook photo album, sharing the photo on Twitter, and finally sharing the photo as
an attachment through email.

The examples here use the Facebook module and custom code from Appcelerator Alloy
social.js module for Twitter integration. There are open source modules to integrate
social media using the native APIs and the IOS 6 native integration of Facebook and Twitter
that can be found in the Appcelerator Marketplace and on Github.

Creating the CommonJS Library

for Sharing Functions

To get started, you need to create a new file called sharing. js and add it to the 1ib folder cre-
ated previously. In the sharing. js library file you will start off by ensuring that the Facebook
module has been loaded. Add the following code to the top of the sharing. js library file:

// if facebook not loaded, then load it
if (!Alloy.Globals.FB) ({
Alloy.Globals.FB = require ('facebook') ;

}

// Enabling single sign on using FB
Alloy.Globals.FB.forceDialogAuth = false;

www.it-ebooks.info

http://www.it-ebooks.info/

266 BUILDING CROSS-PLATFORM APPS USING TITANIUM

// get the app id
Alloy.Globals.FB.appid =
Ti.App.Properties.getString("ti.facebook.appid") ;

The application will provide the users with three choices for sharing:

m Posting a message to the user’s Facebook wall.
m Posting the picture to the user’s Facebook Album.

m Sharing the image through the user’s email.
The Appcelerator Titanium Framework has an option dialog that’s used to allow the user to
select the method of sharing (see Figures 10-1 and 10-2). Once the user selects a share

method, the application will verify the Facebook permission, if necessary, and then call the
appropriate function from the share library.

Share Photo

Facebook Feed

Facebook Photo

Twitter

Email

Cancel

FIGURE 10-1: Sharing options for sharing a photo on i0S.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 SHARING VIA FACEBOOK, EMAIL, AND TWITTER 267

i 10:01 PM

Facebook Feed

Facebook Photo

Twitter

Email

Cancel

FIGURE 10-2: Sharing options for sharing a photo on Android.

exports.sharingOptions = function(options) {
var dialog, params;

if (OS_ANDROID) ({

params = {
options : ['Facebook Feed', 'Facebook Photo', 'Email'l],
buttonNames : ['Cancel'],
title : 'Share Photo'

Vi

} else {

params = {

options : [

www.it-ebooks.info

http://www.it-ebooks.info/

2638

BUILDING CROSS-PLATFORM APPS USING TITANIUM

'Facebook Feed', 'Facebook Photo',
'Email', 'Cancel'

1,

cancel : 3,

title : 'Share Photo'

}i

dialog = Titanium.UI.createOptionDialog (params) ;
// add event listener
dialog.addEventListener ('click', function(e) {

// user clicked cancel
if (OS_ANDROID && e.button) {
return;

if (e.index === 0) {
prepForFacebookShare (function() {
shareWithFacebookDialog (_options.model) ;
P
} else if (e.index === 1) {
prepForFacebookShare (function () {
shareFacebookPhoto (_options.model) ;
P
} else if (e.index === 2) {
shareWithEmailDialog(options.model) ;

I3F;

// show the dialog
dialog.show () ;

}i

There are a few things you should notice. The sharingOptions method is the only method
exported from this library; all of the other functions are accessible only from this library. The
dialog is created with the options and the event listener determines which button was

clicked.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 SHARING VIA FACEBOOK, EMAIL, AND TWITTER 269

Facebook Permissions and Reauthorization

The new Facebook module for Appcelerator supports the latest Facebook SDK requirements for
separating logging in to Facebook from requesting specific permissions for posting to the user’s
wall or feed. In order to properly allow users to share the photos in the application, the applica-
tion must first check if the user has logged in to Facebook and then confirm that the user has
provided the application with the proper permissions. See http://docs.appcelerator.
com/titanium/latest/#!/api/Modules.Facebook for more information.

Since the user in the application can create an account through Facebook or with an email
and a password, the application needs to verify the user’s login status before verifying per-
mission. The following code is the first step in allowing sharing from the app.

Facebook’s new authorization process allows you to reauthorize the user to verify permis-
sions. The initial login for a user’s account can only request the minimum access; the follow-
ing code checks to see if the users have given the app the proper permission to post photos
to their stream.

Add this code to sharing.js:

function checkPermissions(permissions, _callback) ({
var FB = Alloy.Globals.FB;
var query = "SELECT " + permissions + " FROM permissions WHERE
uid = me()";

FB.request ("fgl.query", {
query : query
}, function(resp) {
try {
resp.result = JSON.parse (resp.result) ;
_callback (resp) ;
} catch (e) {
_callback (resp) ;

3N
¥

This code uses the Appcelerator Facebook module to perform a Facebook query against the
users account to see if the specified permission is available on the account. The Facebook
module for Appcelerator supports the Facebook Query Language, the Facebook Graph API,
and specific Facebook dialogs; you will use the Facebook Share dialog in the next section.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Modules.Facebook
http://docs.appcelerator.com/titanium/latest/#!/api/Modules.Facebook
http://www.it-ebooks.info/

270

BUILDING CROSS-PLATFORM APPS USING TITANIUM

In the function prepForFacebookShare, the application checks the logged in status. If the
user is not logged in, it provides the user the opportunity to log in using the Facebook autho-
rize method. At this point the application flow is handled by the login event callback function
loginCB. If the user successfully logs in to Facebook, the application flow will then call the
function prepForFacebookShare again, this time with the appropriate credentials.

When the application calls prepForFacebookShare with the appropriate appID and settings,
the application will first check if the permission is available using the checkPermissions
function. If permission is not available, it will reauthorize the user with the new permission
request and then move on. If the user approves the authorization for the additional permis-
sions, then the application is now prepared for sharing on Facebook. The code for the function is
listed here, and should be added to sharing. js:

function prepForFacebookShare (callback) {
var FB = Alloy.Globals.FB;

var loginCB = function(e) {
if (e.success) {
prepForFacebookShare (_callback) ;
} else if (e.error) {
alert (e.error) ;
}
// remove event listener now that we are done
FB.removeEventListener ('login', loginCB) ;
return;

Vi

// 1f not logged in then log user in and then try again

if (FB.loggedIn === false) {
FB.addEventListener('login', loginCB) ;
FB.authorize () ;

} else {

// First make sure this permission exists for user
checkPermissions ('publish stream', function(response) {

var hasPermission=(_response.result[0] .publish stream === 1);
if (_response.success && hasPermission) ({

_callback() ;
} else {

// if not try and get the permission

FB.reauthorize (['publish stream'], 'me', function(e) ({

if (e.success) {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 SHARING VIA FACEBOOK, EMAIL, AND TWITTER

_callback() ;
} else {
alert ('Authorization failed: ' + e.error);

Sharing to the Facebook Wall

All of the sharing starts with clicking the Share button on the feed.xml or mapDetail.
xml view. Since the application responds to click events on the Share button in the feed.js
controller, the code changes will begin there.

Feed.js Controller Changes
The first change to the application is to include the new library called share. js in the con-
troller file for the feed. At the top of the feed. js controller file, add this line:

// load sharing library
var sharing = require("sharing");

Next update the handleShareButtonClicked function to support the click on the
shareButton. A click on the shareButton will call the new function called
handleShareButtonClicked.

function processTableClicks(event) {

if (_event.source.id === "commentButton") {
handleCommentButtonClicked (event) ;
} else if (_event.source.id === "locationButton")

handleLocationButtonClicked(event) ;
} else if (_event.source.id === "shareButton") ({
handleShareButtonClicked(event);

The function handleShareButtonClicked is structured the same as handleComment
ButtonClicked; retrieve the proper model that is associated with the click and call the
appropriate function to perform the action. In this case, [introduce a new Commonds library
to handle all of the sharing functionality for the application.

www.it-ebooks.info

271

http://www.it-ebooks.info/

272 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Here is the code for the handleShareButtonClicked function

function handleShareButtonClicked(event) {
var collection, model;

if (! event.row)
model = event.data;

} else {
collection = Alloy.Collections.instance ("Photo") ;
model = collection.get(event.row.row_ id);

// commonjs library for sharing
sharing.sharingOptions ({
model : model

)

For sharing to the user’s wall, the application will use the Appcelerator Titanium Framework
Facebook module, which provides access to the Facebook dialog API. See the specific
Appcelerator documentation at http://docs.appcelerator.com/titanium/latest/
#!/api/Modules.Facebook

Add this code to sharing.js:

function shareWithFacebookDialog(model)

var data = {
link : model.attributes.urls.original,
name : "tiGram Wiley Sample App",
message : " ACS Alloy Sample App and the photo",
caption : model.attributes.title,
picture : model.attributes.urls.preview,
description : "None"

bi

Alloy.Globals.FB.dialog ("feed", data, function(e) ({
if (e.success && e.result)
alert ("Success!") ;
} else {
if (e.error) {

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Modules.Facebook
http://docs.appcelerator.com/titanium/latest/#!/api/Modules.Facebook
http://www.it-ebooks.info/

CHAPTER 10 SHARING VIA FACEBOOK, EMAIL, AND TWITTER 273

alert (e.error) ;
} else {
alert ("User canceled dialog.");

So you can test the functions as you move through the chapter, add the other two functions
from the shareOptions method as empty stubs so the application can compile. Add the
stubbed-out methods to sharing.js:

function shareFacebookPhoto(model) {}
function shareWithEmailDialog(model) {}

Using the Facebook Feed dialog the application sets up the parameters for the function from
the photo model that is passed into the method from the click event handler. The application
provides the URL for the original image upload, which should be the larger of the images. The
application also provides a title from the model and the preview URL for a smaller version of
the image to display in the feed.

Run the application and select the Facebook Feed option to see the image uploaded to your
Facebook Feed. If you have not logged in with Facebook yet, the application will prompt you
to and request the appropriate permissions. See Figure 10-3; note that the screens look very
similar so only the iOS version is presented here.

Sharing to the Facebook Album

Sharing to the photo album is a bit more complex since the Facebook module requires the
image blob, not an URL for uploading the image. An additional share library function can be
added to download the file from Appcelerator Cloud Services and then you can pass the
image blob to the Facebook module for sharing.

Image Download Helper Function

The function takes an URL to download and a path to save the file. Since in some scenarios,
there is no need to save the file, the application just needs the blob. The function will return the
blob only if there isno _path specified when calling the function. The object returned from the
callback will contain success as true and a property blob, which will contain the image.

www.it-ebooks.info

http://www.it-ebooks.info/

274

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Carrier &

(®)

Cancel Post to Wall

tiGram Wiley Sample App
Sample Photo Mon May 26 2014
02:31:52 GMT-0400 (EDT)

None

? via Wileytigram

@

FIGURE 10-3: The Facebook Feed dialog looks pretty much the same on both platforms.

The function itself makes an HTTP request to download the file. If the http.onload
method is called, the function will write the response data to the file created based on
the path parameter and the applicationDataDirectory. If the application does not
specify a _path parameter, the response data will be returned as a blob.

Add this code to the sharing. js library file:

function downloadFile (url, path, callback) {
Alloy.Globals.PW.showIndicator ("Downloading File", true);
_path && Ti.API.debug("downloading " + url + " as " + path);

var £, fd, http;

http = Ti.Network.createHTTPClient ({
ondatastream : function|(e) {
// update the caller with information on download

www.it-ebooks.info

http://www.it-ebooks.info/

275

CHAPTER 10 SHARING VIA FACEBOOK, EMAIL, AND TWITTER

if (e.progress > 0) {
Alloy.Globals.PW.setProgressValue &&
Alloy.Globals.PW.setProgressValue (e.progress) ;

}
}
3N

http.open ("GET", url);
http.onload = function() {

if (_path) {
if (Ti.Filesystem.isExternalStoragePresent ())
fd = Ti.Filesystem.externalStorageDirectory;
} else {
// No SD or i0S
fd = Ti.Filesystem.applicationDataDirectory;

// get the file
f = Ti.Filesystem.getFile(fd, _path);

// delete if already exists
if (f.exists()) {
f.deleteFile() ;
f = Ti.Filesystem.getFile(fd, _path);

// write blob to file
f.write (http.responseData) ;
Alloy.Globals.PW.hideIndicator () ;

_callback && _callback ({
success : true,
nativePath : f.nativePath

3N

} else {
Alloy.Globals.PW.hideIndicator () ;
// 1f no path, the just return the blob
_callback && _callback ({
success : true,
nativePath : null,
blob : http.responseData

I3F;

www.it-ebooks.info

http://www.it-ebooks.info/

276

BUILDING CROSS-PLATFORM APPS USING TITANIUM

}i
// if error return information
http.onerror = function (e) {
Alloy.Globals.PW.hideIndicator () ;
_callback && _callback({
success : false,
nativePath : null,
error : e

3K
Vi

http.send() ;

Revisiting and Refactoring the
Progress Window Library

If you look carefully you will see that there is a new parameter added to the Alloy.
Globals.PW.showIndicator function; that parameter indicates if you want to display a
progress bar in the view along with the message. The progress bar is used to provide feedback
to the users when the file is being downloaded from the server. When sharing images to
social media, the application is using a higher-resolution image than what is displayed on the
devices, so there will be a noticeable delay in the application. Providing the users with a
visual cue that there is a long-running task is just good design.

To support this new parameter, you will need to make some changes to the progress
Window. js library. When the parameter is set to true, you will display the progress bar
instead of just loading a message. To support the progress bar, you also need to include a
method to update the progress as the file is downloaded; the setProgressvalue method
is provided for that purpose.

Replace the contents of the file with the following listing; the change to the library impacted
all the methods:

var activityIndicator, showingIndicator,
activityIndicatorWindow, progressTimeout;

var androidContainer = null;

exports.showIndicator = function(messageString, _progressBar) {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 SHARING VIA FACEBOOK, EMAIL, AND TWITTER 277

// 1f Android, we need a container for the progress bar to
// make it more visible
if (OS_ANDROID) ({
androidContainer = Ti.UI.createView ({
top : "200dp",
width : Ti.UI.FILL,
height : Ti.UI.SIZE,
opacity : 1.0,
backgroundColor : 'black',
color : 'black',
visible : true

3N

activityIndicatorWindow = Titanium.UI.createWindow ({

top : O,

left : 0,

width : "100%",

height : "100%",
backgroundColor : "#58585A",
opacity : .7,

fullscreen : true

I3F;

if (_progressBar === true) {
// adjust spacing, size and color based on platform
activityIndicator = Ti.UI.createProgressBar ({
style : OS_IOS && Titanium.UI.iPhone.ProgressBarStyle.PLAIN,

top : (OS_IOS ? "200dp" : 'l0dp'),
bottom : (OS_ANDROID ? '1l0dp' : undefined),
left : "30dp",
right : "30dp",
min : O,
max : 1,
value : 0,
message : _messageString || "Loading, please wait.",
color : "white",
font : {
fontSize : '20dp’',
fontWeight : "bold"

}I
opacity : 1.0,
backgroundColor : (OS ANDROID ? 'black' : 'transparent')

www.it-ebooks.info

http://www.it-ebooks.info/

278 BUILDING CROSS-PLATEORM APPS USING TITANIUM

P
} else {
activityIndicator = Ti.UI.createActivityIndicator ({
style : OS_IOS ? Ti.UI.iPhone.ActivityIndicatorStyle.BIG
Ti.UI.ActivityIndicatorStyle.BIG,
top : "10dp",
right : "30dp",

bottom : "1l0dp",
left : "30dp",
message : _messageString || "Loading, please wait.",
color : "white",
font : {
fontSize : '20dp',
fontWeight : "bold"

I
I3F;

// 1f Android, you need to account for a container when

// setting up the window for display

if (OS_ANDROID) ({
androidContainer.add (activityIndicator) ;
activityIndicatorWindow.add (androidContainer) ;
activityIndicatorWindow.open/() ;

} else {
activityIndicatorWindow.add (activityIndicator) ;
activityIndicatorWindow.open/() ;

activityIndicator.show() ;
showingIndicator = true;

// safety catch all to ensure the screen clears

// after 25 seconds

progressTimeout = setTimeout (function() {
exports.hideIndicator () ;

}, 35000) ;

}i

exports.setProgressValue = function(value) {
activityIndicator && activityIndicator.setValue(value) ;

}i

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 SHARING VIA FACEBOOK, EMAIL, AND TWITTER

exports.hideIndicator = function() {

if (progressTimeout) {
clearTimeout (progressTimeout) ;

progressTimeout = null;
}
if (!showingIndicator) ({
return;

activityIndicator.hide() ;

// 1f android, you need to account for a container when
// cleaning up the window
if (OS_ANDROID) {
androidContainer.remove (activityIndicator) ;
activityIndicatorWindow.remove (androidContainer) ;
androidContainer = null;
} else {
activityIndicator &&
activityIndicatorWindow.remove (activityIndicator) ;
}
activityIndicatorWindow.close () ;
activityIndicatorWindow = null;

// clean up variables

showingIndicator = false;
activityIndicator = null;

Sharing to a Facebook Album

Now that the application has a way to get the image as a blob, the way to upload the image to
the user’s Facebook account is simply to call the proper Facebook Graph API calls.

function shareFacebookPhoto(model) {

var dataModel = model.attributes;
var message;

// get image as blob, null passed for _path
downloadFile (dataModel .urls.original, null, function(data) {

www.it-ebooks.info

279

http://www.it-ebooks.info/

280

BUILDING CROSS-PLATFORM APPS USING TITANIUM

if (_data.success === false) ({
alert ("Error downloading file for sharing") ;

return;

message = dataModel.title;
message += "\nfrom ACS & Alloy Sample App";

var data = {
message : message,
picture : data.blob,

}i

Alloy.Globals.PW.showIndicator ("Uploading File to Facebook",

false) ;

// Now post the downloaded photo
Alloy.Globals.FB.requestWithGraphPath ('me/photos', data,
'"POST', function(e) ({
Alloy.Globals.PW.hideIndicator () ;

if (e.success) {
alert ("Success! From Facebook: ");
} else {
if (e.error) {
alert ('Error Posting Photo to Album ' + e.error);

} else {
alert ("Unknown result");

Sharing an Image as an Email Attachment
Sharing the image as an email attachment requires that there is an email account configured

on the device.

The Appcelerator Titanium Framework provides API access to an email dialog box that will
present the user with the platform-specific interface for sending email messages. Using this
API, the application will prepopulate the mail message with some content from the photo
model and provide the attachment of the original photo along with a link to the photo.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 SHARING VIA FACEBOOK, EMAIL, AND TWITTER

This email dialog requires that the device is configured for mail, so the first check is to con-
firm mail is available.

The application will send HTML-formatted mail so when the emailDialog is initialized the
HTML property is set to true.

The download helper function discussed in the previous section will be utilized in this attach-
ment function since the attachment is read from a file to be associated with the email.

All of the additional fields are retrieved from the photo model that is passed to the function
from the click event handler.

function shareWithEmailDialog(model) {
var dataModel = model.attributes;

var emailDialog = Ti.UI.createEmailDialog ({
html : true

3N

if (emailDialog.isSupported() === false) ({

alert ("Email is not configured for this device");

return;
}
emailDialog.subject = " Wiley ACS & Alloy Sample App";
emailDialog.messageBody = '<html>' + dataModel.title + '
';
emailDialog.messageBody += '<a href="' + dataModel.urls.original;
emailDialog.messageBody += '">Link to original image';
emailDialog.messageBody += '</html>';
downloadFile(model.attributes.urls.original, "temp.jpeg",

function(data) {
if (_data.success === false) {

alert ("Error downloading file\n Image not shared!");
return;

var £ = Ti.Filesystem.getFile(data.nativePath) ;
emailDialog.addAttachment (£f) ;

emailDialog.addEventListener ("complete", function(event) {
if (e.result === emailDialog.SENT) {

www.it-ebooks.info

281

http://www.it-ebooks.info/

282 BUILDING CROSS-PLATFORM APPS USING TITANIUM

alert ('Message Successfully Sent!');

}
)

emailDialog.open() ;

3K

When you run the code for the email attachment, the iOS experience looks similar to
Figure 10-4.

Carrier ¥ 9:46 PM

Cancel Wiley ACS & Alloy Sa...

To:
Cc/Bcc:
Subject: Wiley ACS & Alloy Sample App

Sample Photo Mon May 26 2014
02:31:52 GMT-0400 (EDT)
Link to original image

=

FIGURE 10-4: Adding an email attachment looks pretty much the same on both platforms.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 SHARING VIA FACEBOOK, EMAIL, AND TWITTER 283

The experience on Android is a bit different since the API is using intents, so you are given a
list of applications that support sharing of the image. If you select the email options, your
experience should be similar to Figures 10-5 and 10-6.

\

Evernote -
Create Note

'

Trello

FIGURE 10-5: Email sharing experience on Android.

www.it-ebooks.info

http://www.it-ebooks.info/

284

BUILDING CROSS-PLATFORM APPS USING TITANIUM

¢ T3¢ 4@ 10:13PM

(™ Compose >

aaron@clearlyinnovative.com

|

Wiley ACS & Alloy Sample App

Sample Photo Mon May 26 2014
02:31:52 GMT-0400 (EDT)
Link to original image

temp.jpeg
2.5 MB Image

FIGURE 10-6: Email sharing experience on Android when Gmail is selected.

Twitter Integration with the social.js Module

When Alloy was first released, there was a sample application written for Appcelerator’s
Developer Conference CODESTRONG 2012, which demonstrated the early potential of the
Alloy Framework. In that application there was a module called social.js, which demon-
strated Twitter integration with Appcelerator using the REST APIs from Twitter. Since the
release of that application, Twitter has changed the way images are posted to its service, so
the module no longer works.

In the following section, code is presented that will allow for the social.js module to be
modified to support uploading images to Twitter. This section is not intended to be a com-
prehensive overview of the code in the social. js library, but to demonstrate integrating
Twitter in an Appcelerator Titanium Alloy application using JavaScript APIs.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 SHARING VIA FACEBOOK, EMAIL, AND TWITTER

Setting Up Your Twitter Developer Account

To create a Twitter Developer Account, log in to https://dev.twitter.com/ and select
Create a New App. Follow the instructions and create your application. Take note of the keys
generated by the application. You will need to use the consumer key and secret key to add to
your tiapp.xml, because this is how the application will interact with Twitter to validate
the user’s credentials and provide access to the Twitter API on the user’s behalf. Copy the
keys and paste the credentials to tiapp.xml as follows:

<property name="twitter.consumerKey">wNuaWTd7whh43kjHGA</property>
<property name="twitter.consumerSecret">Al0unUGyANSLEpU</propertys>

Adding social.js to Your Project

The social.js library can be found in the Appcelerator Alloy Github repository located at
https://github.com/appcelerator/alloy/blob/master/Alloy/builtins/
social.js. Download the file to the library directory of your project and save.

| suggest renaming the social. js library file so you know you are working with a modified
copy; in this example, the file has been renamed social wiley.J.

Android issues with social wiley.js animation were resolved by making additional
changes to the file. Change the code on line 510 to the following:

opacity : Ti.Android ? 1 : 0,

Change the code on line 560 to the following:

ITi.Android && animation.popIn (window) ;

Adding the sharelmage Function

The current version of social.js does not support uploading images with Twitter, so this is
the new functionality that you will be adding. The application needs to implement the image
upload API call from the Twitter vl SDK. The full documentation on the API call is available at
https://dev.twitter.com/docs/api/1.1/post/statuses/update with media.

You should add the following code to the social wiley.js file in the 1ib directory of
your application. The code will create the proper oAuth POST request to the Twitter servers
to upload the image for sharing using your Twitter credentials.

www.it-ebooks.info

285

https://dev.twitter.com/
https://github.com/appcelerator/alloy/blob/master/Alloy/builtins/social.js
https://github.com/appcelerator/alloy/blob/master/Alloy/builtins/social.js
https://dev.twitter.com/docs/api/1.1/post/statuses/update_with_media
http://www.it-ebooks.info/

286 BUILDING CROSS-PLATFORM APPS USING TITANIUM

this.sendTwitterImage = function (options) {
var pUrl =
"https://api.twitter.com/1.1/statuses/update with media.json";

var pTitle = options.title;

var pSuccessMessage = options.onSuccess;

var pErrorMessage = options.onError;

if (accessToken == null || accessTokenSecret == null) {
Ti.API.debug("The client doesn't have an access token") ;
return;

}

accessor.tokenSecret = accessTokenSecret;

var message = createMessage (pUrl) ;

message.parameters.push(["ocauth token", accessToken]) ;
message.parameters.push(["ocauth timestamp",
OAuth.timestamp()]) ;
message.parameters.push(["ocauth nonce", OAuth.nonce(42)]);
message.parameters.push(["ocauth version", "1.0"]);

OAuth.SignatureMethod.sign (message, accessor) ;
var parameterMap = OAuth.getParameterMap (message.parameters) ;
client = Ti.Network.createHTTPClient ({

onload : function() {

if (client.status == 200) {
pSuccessMessage && pSuccessMessage (this.responseText)
} else {

pErrorMessage && pErrorMessage (this.responseText) ;

b

onerror : function()
Ti.API.error ("Social.js: FAILED to send a request!");
Ti.API.error (this.responseText) ;
pErrorMessage && pErrorMessage (this.responseText) ;

I3F;

client.open ("POST", pUrl);

header = OAuth.getAuthorizationHeader ("", message.parameters) ;
client.setRequestHeader ("Authorization", header) ;
if (!Ti.Android) {
client.setRequestHeader ("Content-Type",
"multipart/form-data") ;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 SHARING VIA FACEBOOK, EMAIL, AND TWITTER

client.send(options.params) ;
Vi
1

Next, the library exposes the shareImage function in the same manner that the share
function is exposed. The user’s authentication status must be verified before the image can
be uploaded; library already has the functionality provided through the authorize func-
tion, which will display the Twitter mobile web authentication user interface. If authoriza-
tion is successful, the anonymous callback function will execute the sendTwitterImage
function using the values passed in the opt ions parameter.

shareImage : function(options) {
this.authorize (function() {
adapter.sendTwitterImage ({
params : {
media : options.image,
status : options.message,
I
title : "Twitter",
onSuccess : options.success,
onError : options.error

Including the social.js Library in the Application

Now that social wiley.js is properly set up, the application can utilize the functions to

share the photos on Twitter. Open the alloy.js file and add the code to load social

wiley.js to the library, right below the code for initializing Facebook.

// 1f twitter is not loaded/initialized
if (!Alloy.Globals.TW)
var TAP = Ti.App.Properties;
Alloy.Globals.TW = require('social wiley') .create({
consumerSecret : TAP.getString('twitter.consumerSecret'),
consumerKey : TAP.getString('twitter.consumerKey')

13N

www.it-ebooks.info

287

http://www.it-ebooks.info/

288 BUILDING CROSS-PLATEORM APPS USING TITANIUM

Adding Functionality to the sharing.js Library

Modify the sharingOptions function in the sharing.js library to include the Twitter
option and connect the optionsDialog event to the new shareTwitterPhoto function

exports.sharingOptions = function(options) {
var dialog, params;

if (OS_ANDROID) {

params = {

options : ['Facebook Feed', 'Facebook Photo!',
'"Twitter', 'Email'],

buttonNames : ['Cancel'],
title : 'Share Photo'

Vi

} else {

params = {

options : ['Facebook Feed', 'Facebook Photo',

'"Twitter', 'Email', 'Cancel'],
cancel : 4,
title : 'Share Photo'

}i

dialog = Titanium.UI.createOptionDialog (params) ;
// add event listener
dialog.addEventListener('click', function(e) {

// user clicked cancel
if (OS_ANDROID && e.button)
return;

if (e.index === 0) {
prepForFacebookShare (function () {
shareWithFacebookDialog (_options.model) ;
1 i
} else if (e.index === 1) {
prepForFacebookShare (function() {
shareFacebookPhoto (_options.model) ;
P i
} else if (e.index === 2) {
shareTwitterPhoto(options.model) ;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10 SHARING VIA FACEBOOK, EMAIL, AND TWITTER

} else if (e.index === 3) {
shareWithEmailDialog(options.model) ;

}
3N

// show the dialog
dialog.show () ;

Vi

The shareTwitterPhoto function is structured the same as the other sharing photo func-
tions that require the image to be downloaded before sharing to social media. The applica-
tion downloads the image from the server and then passes the blob—along with the
additional text for the status message to be associated with the tweet—to the exposed
Twitter API call from the social.js library.

function shareTwitterPhoto(model) {
var dataModel = model.attributes;

var twitter = Alloy.Globals.TW;
downloadFile (dataModel.urls.iphone, null, function(data) {

if (_data.success === false) {
alert ("error downloading file");
return;
}
twitter.shareImage ({
message : dataModel.title + " #tialloy",

image : _data.blob,
success : function() ({
Ti.UI.createAlertDialog({
title : 'Sample Alloy & ACS App',
message : "Tweeted successfully!™",
buttonNames : ['OK']
}) .show () ;
b
error : function() {
Ti.UI.createAlertDialog({
title : 'Sample Alloy & ACS App',
message : 'Unable to post your tweet.',
buttonNames : ['OK']

www.it-ebooks.info

289

http://www.it-ebooks.info/

290

BUILDING CROSS-PLATFORM APPS USING TITANIUM

}) .show () ;

3]
I
// update the UI progress indicator
function(e)
progressIndicator && (progressIndicator.value
= e.progress) ;

3K

Summary

Sharing is an essential feature in many mobile applications; it leverages the network effect to
promote the application through popular social media applications and email. The
Appcelerator Titanium Framework makes it easy to quickly integrate this sharing functional-
ity with a popular framework like Facebook. The Twitter integration is a bit more challeng-
ing, but it shows how flexible the Appcelerator Titanium Framework is in adopting standard
REST-based APIs and other JavaScript-based libraries. Also note that this integration is
cross-platform and that you have very quickly integrated Twitter and Facebook sharing using
JavaScript.

The introduction of some helper functions like the downloadFile and the progress
Indicator supporting functions continue to demonstrate the powerful combination of the
Appcelerator Framework and a language like JavaScript.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter
Push Notifications

INTEGRATING PUSH NOTIFICATIONS into your application will allow the sending and
receiving of messages, called notifications, to and from your application. The messages are
sent to the specific device, so it does not necessarily require your application to be in the
foreground for the message to be received. The application can then take a specific, pre-
defined action based on receiving the notification.

iOS and Android mobile operating systems both support this functionality, although their
implementations differ. Your application, if iOS-based, will receive notifications from the
Apple Push Notifications (APN) service. If your application is Android-based, it will receive
push notifications through the Google Cloud Messaging (GCM) service.

m Find more about Google Cloud Messaging (GCM) athttp: //developer.android.
com/google/gcm/index.html.

m For more about Apple’s push notifications, visit ht tps: //developer.apple.com/
library/ios/documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/Chapters/ApplePushService.html#//apple
ref/doc/uid/TP40008194-CH100-SW9.

The Appcelerator Cloud Services Push Notifications API provides a user session or a device
token-based solution for notifications. In this application, you will be using the push func-
tionality that requires the user to be logged in to receive notifications. You will integrate this
into the login process to register for notifications and the logout process for unregistering
the user.

www.it-ebooks.info

http://developer.android.com/google/gcm/index.html
http://developer.android.com/google/gcm/index.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW9
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW9
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW9
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html#//apple_ref/doc/uid/TP40008194-CH100-SW9
http://www.it-ebooks.info/

292

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Setting Up Push Notifications on
Your Development Platform

This section covers the process of setting up push notifications on the Apple and Google
development platforms.

Apple Push Notifications Configuration

For configuring your IOS application with Appcelerator Cloud Services for Push Notifications,
you need an App ID that has been configured to support push notification services and a SSL
Certificate and private key that will be added to the Push Notification server. The Appcelerator
Cloud Services App Dashboard will provide the interface to enter the private key
information.

Setting up your App ID and obtaining the SSL certificate and private key are beyond the
scope of this book and are covered in the Appcelerator documentation. Follow the steps out-
lined in that documentation and then return here to continue the configuration (see
http://docs.appcelerator.com/cloud/latest/#!/guide/ios-section-
push-notification).

Google Push Notifications Configuration

To configure your Android application with Appcelerator Cloud Services for Push Notifi-
cations, you will be using Google Cloud Messaging. To use Google Cloud Messaging, you
need a Google Cloud Messaging Project ID and a Google Cloud Messaging API key associated
with the Project ID.

Setting up your Google Cloud Messaging Project ID and obtaining the Google Cloud
Messaging API key are beyond the scope of this book and are covered in the Appcelerator
documentation. Follow the steps outlined in that documentation and then return here to
continue the configuration (see http://docs.appcelerator.com/cloud/latest/
#!/api/PushNotifications).

Configuring Push Notifications in

Appcelerator Cloud Services

After you have followed the directions based on the specific platform, your Appcelerator
Cloud Services Dashboard should look similar to Figure 11-1. Remember that if you are
building an Android application, you are using Google Cloud Messaging in your app, not
MqTT.

www.it-ebooks.info

http://docs.appcelerator.com/cloud/latest/#!/guide/ios-section-push-notification
http://docs.appcelerator.com/cloud/latest/#!/guide/ios-section-push-notification
http://docs.appcelerator.com/cloud/latest/#!/api/PushNotifications
http://docs.appcelerator.com/cloud/latest/#!/api/PushNotifications
http://www.it-ebooks.info/

CHAPTER 11 PUSH NOTIFICATIONS

a Products Community Resources Partners Customers Company

Secure Identity Server Aead Documentation on Securs Identity Server

User Authentication Scheme Authorization Server & AP| Server
Apple i0S Push Certificates Read Push Notification for 108
Apple Development Push Certificate:

?
Current Certificate Status: = Enable Disable

Android Push Configuration Resd Push Notfication for Android

Application Package (MQTT): com.wiley.Tlgram
Google Cloud Messaging (GCM) AP| Key: AlzaSyCbQmP34uYUrl-fxzQJb_GITwQy YOWSG!
Google Cloud Messaging (GCM) Sender ID: 5410654366

SMTP Settings

FIGURE 11-1: ACS app console configuration for push notifications.

After this you should be ready to start writing some code.

Creating the Push Notifications
Library in an Application

If you are building an Android application, you need to include the ti.cloudpush module
in your application. To add another module to your application, open your project in
Titanium Studio and double-click on the tiapp.xml file in the project browser (see
Figure 11-2).

Click the green plus to add a new module to the application, then selected the ti.cloudpush
module from the list of available modules. Figure 11-3 shows the list of available modules.

www.it-ebooks.info

293

http://www.it-ebooks.info/

294

BUILDING CROSS-PLATEO

RM APPS USING TITANIUM

& 'Wileytigram' Configurations

Application

Application Id: I(nm.wil!yATIg ram

Wersion: |1.0

Publisher: |aarunksaunders

Publisher URL: | http:/ /www.clearlyinnovative.com

]
|
|
|
| Browse... | O
\

lcon: |appi(un.png

Copyright: |2013 by aaronksaunders

not specified

Description

Build Properties

Titanium SDK: | 3.1.2.ca ™

Android Runtime: | V& 2@

Deployment Targets
[iPad
g iPhone
Android
BlackBerry (3)

Gverv_iew J tiapp.xml ‘

Modules
Module B [e ®
I ticloud * #* * *
*

[ti.cloudpush

[facebook * *
[tiimagefactory * #*
@ timap *

#* The latest detected version will be used

Cloud Services

Production Key: uyFTmfmBtYWLelNpmUTZMtVHgKnminEk
Development Key: ZRb6wsrl0QLJIhRVZypsSal4EHMXGmDS

FIGURE 11-2: The tiapp.xml properties editor.

1.- NN - F——

_ Mobile Modules (SDK 3.1.2.CA)

Select an item to open (? = any character, * = any string):

(7

Matching items:

al {APl Ver. 2}

[ti.physicalsizecategory [android] - Project {API Ver. 2}
@ tizen [tizen] - Global {API Ver. 2}

| @ ti.cloudpush. Versions: [2.3.2, 2.2.0, 2.1.0, 2.0.7, 2.0.5]

[

cancel | [0k]

FIGURE 11-3: A list of modules with ti.cloudpush selected.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 PUSH NOTIFICATIONS

This module is only used to receive the push notifications, sending notifications is handled
by the Appcelerator Cloud services default framework. Additional information on the cloud
push moduleisavailableathttp://docs.appcelerator.com/titanium/latest/#!/
api/Titanium.CloudPush.

Creating the pushNotifications.js Library

Create a new library file called pushNotifications.js and add the new file to your proj-
ect’s 1ib directory; the 1ib folder should be placed inside of the app folder in the project
directory.

The first thing you need to do in your library is provide the cross-platform support by includ-
ing the Android push library. You will also need to add the Appcelerator Cloud Services
library to make the push notification API calls. The Android library is needed for receiving
notifications, not sending them.

var Cloud = require('ti.cloud');
var AndroidPush = OS ANDROID ? require('ti.cloudpush') : null;

Next you will add the key functions that are needed to support push notifications. You can
start with registering the device to receive notifications. To register to receive notifications,
you need to get a token from the notification server provided by Appcelerator Cloud Services.
Since the IOS and Android approaches are slightly different, they will be covered separately.

Getting the iOS Token

It’s important to add a check at the start of the initialization function to alert the users that
push notifications work only on a physical device and not in the simulator.

The initialization function requires the user object, since that is how you are implementing
push in this application, requiring a user and not token-based push. You are providing a call-
back method, pushRcvCallback, to be called when the application receives a push notifi-
cation; it is in the foreground. The initialization callback, callback, lets the caller know
whether the call was successful or not.

The main call to get the device token on iOS is Ti.Network.registerForPush
Notifications.

See http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Network-
method-registerForPushNotifications for more information.

Your pushNotifications.js lib file should look like this after you add the framework
code for supporting iOS devices.

www.it-ebooks.info

295

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.CloudPush
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.CloudPush
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Network-method-registerForPushNotifications
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Network-method-registerForPushNotifications
http://www.it-ebooks.info/

296 BUILDING CROSS-PLATFORM APPS USING TITANIUM

exports.initialize = function(user, pushRcvCallback, _callback) {
USER_ID = user.get("id");
if (Ti.Platform.model === 'Simulator') {

alert ("Push ONLY works on Devices!") ;
return;

// only register push if we have a user logged in
var userId = _user.get("id");
if (userId) {

if (OS_ANDROID) {
// ANDROID SPECIFIC CODE GOES HERE

} else {
Ti.Network.registerForPushNotifications ({
types : [Ti.Network.NOTIFICATION_TYPE_BADGE,

Ti.Network .NOTIFICATION TYPE ALERT,
Ti.Network .NOTIFICATION TYPE SOUND
1.
success : function(data) {
pushRegisterSuccess (userId, _data, _callback);
b
error : function(data) ({
pushRegisterError (_data, _callback);
b
callback : function(_ data)
// what to call when push is received
_pushRcvCallback (_data.data) ;

K
} else {
_callback && callback({
success : false,
msg : 'Must have User for Push Notifications',

I3F;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 PUSH NOTIFICATIONS 297

Getting the Android Token

The push notification library you included is well documented by Appcelerator at http://
docs.appcelerator.com/titanium/latest/#!/api/Titanium.CloudPush.

For this application, you will include the same code inside the Android conditional of the if
statement in the initialization function listed previously. You will perform some additional
Android-specific configuration upon success of retrieveDeviceToken to properly config-
ure push notifications on the Android devices.

After the Android-specific calls, the application will then call the same callback as the iOS branch
conditional. Remember to call pushRegisterSuccess the same way you did in the i0OS code
because the pushRegisterSuccess call subscribes the user to the proper channels.

Add the following code to the pushNotifications.js file where the comment place-
holder currently exists:

// reset any settings
AndroidPush.clearStatus () ;

// set some properties
AndroidPush.debug = true;
AndroidPush. showTrayNotificationsWhenFocused = true;

AndroidPush.retrieveDeviceToken ({
success : function(data) {
Ti.API.debug("received device token", data.deviceToken);

// what to call when push is received
AndroidPush.addEventListener ('callback', pushRcvCallback) ;

// set some more properties
AndroidPush.enabled = true;
AndroidPush. focusAppOnPush = false;

pushRegisterSuccess (userId, _data, function(response) {
// save the device token locally
Ti.App.Properties.setString('android.deviceToken',
_data.deviceToken) ;

_callback(response) ;

3N
¥

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.CloudPush
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.CloudPush
http://www.it-ebooks.info/

298

BUILDING CROSS-PLATFORM APPS USING TITANIUM

error : function(data) ({
AndroidPush.enabled = false;
AndroidPush. focusAppOnPush = false;
AndroidPush.removeEventListener ('callback', pushRcvCallback) ;

pushRegisterError(data, _callback);

}
3K

Registering Callbacks

The pushRegisterSuccess and pushRegisterError functions handle the success or
error response from the attempt to get a device token. They are abstracted into separate
functions so they can be used to support the Android and the iOS implementation without
code duplication.

You can start with the error callback from the call to Ti.Network.registerForPush
Notifications since it is quite simple; all you are doing here is responding to the caller
with the error information returned from the Appcelerator Cloud Services call and setting
the success flag on the returned object.

function pushRegisterError(data, _callback) {
_callback && _callback({
success : false,
error : _data

K

The success callback is a bit more complex since you want to accomplish a few other things.
With push notifications, the user or device can subscribe to specific channels in the push
notification service.

In this application you have two types of channels—the friends channel, which is how you
will notify individuals of specific actions taken by their friends and two platform-specific
channels that are created for sending platform-specific notifications. The platform channel is
included to demonstrate possibilities with this Appcelerator Cloud Service functionality.

The success callback function is passed the data from the Ti.Network.registerFor
PushNotifications call and a callback parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 PUSH NOTIFICATIONS

Next in the success callback, you will first unsubscribe the user and the device from any
channels it was previously subscribed to. This is necessary because Android will continue to
generate a unique device token and there will be multiple push notifications sent to the same
device.

After the cleanup is completed, you then subscribe the user to the friend channel, which is
used for the communication between the users of the application.

The code is listed here:
function pushRegisterSuccess(userId, _data, _callback) {
var token = data.deviceToken;

// clean up any previous registration of this device
// using saved device token
Cloud.PushNotifications.unsubscribe({
device token
Ti.App.Properties.getString('android.deviceToken'),
user id : _userId,
type : (OS_ANDROID) ? 'android' : 'ios'
}, function(e) ({

exports.subscribe ("friends", token, function(respl) {

// if successful subscribe to the platform-specific channel

if (_respl.success) ({
_callback ({
success : true,
msg : "Subscribe to channel: friends",
data : _data,
I
} else {
_callback ({
success : false,
error : _resp2.data,
msg : "Error Subscribing to channel: friends"

www.it-ebooks.info

299

http://www.it-ebooks.info/

300

BUILDING CROSS-PLATFORM APPS USING TITANIUM

This code uses the exports . subscribe function to subscribe to push notification channels.
The code for this function is pretty straightforward and similar to the Appcelerator Cloud
Services documentation for subscribing to a channel, which you can find at http://docs.
appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Push
Notifications.

There is one difference you will notice, which is that in this code you will be specifying the
type when you make the function call. The type property will be either ios or gem, depend-
ing on your platform implementation. The code in the library is written to be cross-platform
so following this approach will get you the best results.

exports.subscribe = function(_ channel, _token, _callback) {
Cloud.PushNotifications.subscribe ({
channel : _channel,
device_token : _token,
type : OS_IOS ? 'ios' : 'android'
}, function(event) ({

var msgStr = "Subscribed to " + _channel + " Channel";
Ti.API.debug(msgStr + ': ' + _event.success);

if (_event.success) {
_callback ({
success : true,
error : null,
msg : msgStr

IF;

} else {
_callback ({
success : false,
error : _event.data,
msg : "Error Subscribing to All Channels"

Integrating Push in Your Application

Now that you have created the pushNotifications. js library, you can test the configu-
ration after adding the device token and the registration process to the user login functional-
ity. Since Appcelerator Cloud Services application console provides a push notification
console, you can send a push to all registered devices as the administrator.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.PushNotifications
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.PushNotifications
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.PushNotifications
http://www.it-ebooks.info/

CHAPTER 11 PUSH NOTIFICATIONS

Registering for Push Notifications
When the User Logs In

First you need to include the newly created library, pushNotifications, in the index.js
file so you can access the initialization function.

You will create a new function to initialize the push and separate out the functionality. You'll
add the initializing function to the index. j s function called $. loginSuccessAction.

The code should look something like this (the code has been edited for brevity):

$.loginSuccessAction = function(options) {
initializePushNotifications(options.model) ;

the original code would follow here...

You add the function called initializePushNotifications, which requires the param-
eter of the user model from the successful login in the application.

You will create a global variable to hold the device token from the pushNotifications
that you can use as a flag to ensure notifications have been initialized. After this setup, you
call the function and specify first the callback, which indicates that there was a successful
push received, and then the final parameter in the error callback, which is called when an
error occurs.

The following example will display a simple alert showing the payload from the test push
notification. Add this function to the index. js controller file of your application:

function initializePushNotifications(user)

Alloy.Globals.pushToken = null;
var pushLib = require('pushNotifications');

// initialize PushNotifications
pushLib.initialize(_user,
// notification received callback
function(pushData) {
Ti.API.info('I GOT A PUSH NOTIFICATION') ;
// get the payload from the proper place depending
// on what platform you are on
var payload;

www.it-ebooks.info

301

http://www.it-ebooks.info/

302 BUILDING CROSS-PLATFORM APPS USING TITANIUM

try {
if (_pushData.payload) ({
payload = JSON.parse(_pushData.payload) ;
} else {
payload = pushData;
}
} catch(e) {
payload = {};

}

// display the information in an alert
if (OS_ANDROID) {
Ti.UI.createAlertDialog ({

title : payload.android.title || "Alert",
message : payload.android.alert || "",
buttonNames : ['Ok']
}) .show () ;
} else {
Ti.UI.createBAlertDialog ({
title : "Alert",

nn
’

message : payload.alert ||
buttonNames : ['Ok']
}) .show () ;

}
b

// registration callback parameter
function(pushInitData) {
if (_pushInitData.success) ({
// save the token so we know it was initialized
Alloy.Globals.pushToken = pushInitData.data.deviceToken;

Ti.API.debug("Success: Initializing Push Notifications " +
JSON.stringify(pushInitData)) ;

} else {
alert ("Error Initializing Push Notifications") ;

Alloy.Globals.pushToken = null;

I3
1

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 PUSH NOTIFICATIONS 303

Sending Notifications Using the Appcelerator
Cloud Services Console

To test the code you have written so far, open the Appcelerator Cloud Services dashboard
and go to the application you have created (see https://my.appcelerator.com/apps).

Select the app you have created. Make sure you are looking at the development configuration
and then click the Send Push Notification button, as shown in Figure 11-4.

STANDARD | ADVANCED

Send a Push Nofitication

Send a push notification to your subscribed devices.
You curmently have 1 /08 dlient, 0 Android clients subscribed to push nofifications.

Channel @) Channel
Specific Channel & All Channels

Alert) 120 characters max
' Alert: Test Push Notification to all devices |

Badge () Integer must be >0

Sound () Enter sound path
[>]

Vibrate () (andrid only)
) True (= False

Title O 120 characters max {Android only)
' Test Push |

leon () Enter icon (Android only)

Send Push Notification

FIGURE 11-4: Console to select push notifications.

www.it-ebooks.info

https://my.appcelerator.com/apps
http://www.it-ebooks.info/

304

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Enter information into the displayed form to send a test push notification. To see the same
results as the screenshots included, enter the same content. You will only be sending simple
text notifications, so make sure the “standard” configuration is set.

Click the Send Push Notification button and your device. If it’s running, you should receive a
notification alert that looks similar to the one shown in Figures 11-5 and 11-6.

Alert
Test Push Notification to all devices

Ok

FIGURE 11-5: Screenshot with test notification alert displayed on iOS.

Sending a Push Notification

To send a push notification, you will add another function to the pushNotifications.js
library. This function will closely follow the documented notify function, which can be found
in the Appcelerator Cloud Services documentation—see http://docs.appcelerator.
com/titanium/latest/#!/api/Titanium.Cloud.PushNotifications.

You will wrap the function so it can support sending notifications to specific user(s) or send-
ing a notification to all users. The sendPush function takes a parameter named params,
which is a JavaScript hash with specific properties based on the functionality you desire.
The params hash contains the specific user_id of the user if the notification is only for a
specific user. The params hash contains the property £riends if the notification is to be
sent to all users who have subscribed to the friends channel.

The function also verifies there is a valid deviceToken set before attempting to send the

notification. Add the following code to the pushNotifications library so you can send
messages based on user actions in the application.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.PushNotifications
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.PushNotifications
http://www.it-ebooks.info/

CHAPTER 11 PUSH NOTIFICATIONS

8 new messages

Test Push Notification to all
devices

FIGURE 11-6: Screenshot with test notification alert displayed on Android.

exports.sendPush = function(params, _callback) {

if (Alloy.Globals.pushToken === null)
_callback ({
success : false,
error : "Device Not Registered For Notifications!"
1)
return;

www.it-ebooks.info

305

http://www.it-ebooks.info/

306 BUILDING CROSS-PLATFORM APPS USING TITANIUM

// set the default parameters, send to
// user subscribed to friends channel
var data = {

channel : 'friends',

payload : params.payload,

}i

// add optional parameter to determine if it should be
// sent to all friends or to a specific friend
_params.friends && (data.friends = _params.friends);
_params.to_ids && (data.to_ids = params.to_ids);

Cloud.PushNotifications.notify(data, function(e) {
if (e.success) {
// it worked
_callback ({

success : true
)i
} else {
var eStr = (e.error && e.message) || JSON.stringify(e);

Ti.API.error(eStr) ;

_callback ({
success : false,
error : eStr

Sending a Notification When Posting a Photo

When the current user takes a new photo, the application will send a push notification to all
of the current user’s friends to let them know a new photo has been posted.

For this to work properly, you need to get the friends list from the user so you can send a
notification to all of the user’s friends. You will use the function getFollowers from the
user model for just this purpose. After you have retrieved the user’s friends list, you can send

the notification message using the exported function.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 PUSH NOTIFICATIONS

Add the following function to the feed. js controller:

// get all of my friends/followers
function notifyFollowers(model, message) ({

var currentUser = Alloy.Globals.currentUser;

currentUser.getFollowers (function(resp) {
if (_resp.success) {

$.followersList = .pluck(resp.collection.models, "id");

// send a push notification to all friends
var msg = message + " " + currentUser.get ("email");

// make the api call using the library
push.sendPush ({
payload :
custom : {
photo _id : model.get("id"),
b
sound : "default",
alert : msg
b
to _ids : $.followersList.join(),
}, function(responsePush) {
if (_responsePush.success) {
alert ("Notified friends of new photo");
} else {
alert ("Error notifying friends of new photo");
}
P
} else {
alert ("Error updating friends and followers");

3N

At the top of the feed. js file, you need to include the following statement to get access to

the pushNotifications.js library.

var push = require('pushNotifications') ;

www.it-ebooks.info

307

http://www.it-ebooks.info/

308

BUILDING CROSS-PLATFORM APPS USING TITANIUM

In the function processImage in the success callback for the photo. save function, you
can now call the notifyFollowers function to let followers know a new photo has been
published. Add the function call at the end of the success if-statement; the added code
should be as follows:

notifyFollowers (photoResp.model, "New Photo Added") ;

Now when the user takes a photo, a push notification will be sent to all her followers. They will
receive an alert that looks similar to the one shown in Figure 11-7, if the application is active.

Alert

New Photo Added

bsaunders@mail.com

Ok

FIGURE 11-7: The Android application alert.

If the application is not active, the user will receive a system notification that looks similar to
the one shown in Figure 11-8.

Sending a Notification When Commenting on Photos

When the user comments on a photo, the application will send a push notification to the
owner of the photo to let her know that someone has commented on the photo. You need to
get the ID of the owner of the photo so you can send a notification to that specific user.

At the top of the comment . js file, you will need to include the following statement to get
access to the pushNotifications. js library:

var push = require('pushNotifications') ;

The following code should be added to the comment . js controller in the addComment func-
tion call, where the user saves the comment. In the success callback from saving the new
comment model object, you will then send a push notification to the owner of the photo
informing her that a new comment has been added.

notifyFollowers(model, currentPhoto, "New comment posted by");

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 PUSH NOTIFICATIONS 309

9:58 aM wed, sune 11 'Q' =-.,:
= ® ¢4 O %

Screen

A Bluetooth
rotation

Connected as a media device
Touch for other USB options.

9 new messages 9:57 AM
aaronksaunder: mail.com 999+

wileychapter5 9:48 AM
New Photo Added bsaunders@mail.com

Real Racing 3

Lamborghini Gallardo LP560 GT3

New voicemail 9:43 AM
Dial *86

2 missed video calls 06-10-2014
Denise, Damon, Aaron, Denise, Damon (<]

2 new updates
Touch to update Twitter and Amazo..

Connected to "F7ZFTK" (anen)

Verizon Wireless

FIGURE 11-8: The Android system notification center.

The notifyFollowers function is added to the comments. js file to send the push notifi-
cation about the new comment added, as follows:

function notifyFollowers(model, photo, message) ({
var currentUser = Alloy.Globals.currentUser;

push.sendPush ({
payload : {

custom : {
from : currentUser.get ("id"),
commentedOn : photo.id,
commentedId : model.id,

b

www.it-ebooks.info

http://www.it-ebooks.info/

310

BUILDING CROSS-PLATFORM APPS USING TITANIUM

sound : "default",

alert : message + " " + currentUser.get("email")
1
to _ids : photo.get("user").id

}, function(_ responsePush) {
if (_responsePush.success)
alert ("Notified user of new comment");

} else {
alert ("Error notifying user of new comment");

}
3K

Figure 11-9 shows the iOS alert when a comment is added and Figure 11-10 shows the iOS
Notification Center.

Sending a Notification When Adding a New Friend

When a user selects a new friend, the application will send a push notification to the new
friend to let them know someone is now following their new posts. You need to get the ID of
the user who is selected as a friend so you can send a notification to that specific user.

Alert

New comment posted by
aaron@clearlyinnovative.com

Ok

FIGURE 11-9: The iOS alert when a comment is added.

At the top of the friends.js file, you will need to include the following statement to get
access to the pushNotifications. js library:

var push = require ('pushNotifications') ;

To send this notification, add the following code to the friends.js controller inside the
followBtnClicked event handler. This code is added to the success callback of the user
model's method followUser. You will use the user ID of the user who selected to be

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 PUSH NOTIFICATIONS 311

followed as the recipient of the push notification by setting the to ids parameter. You can
also see in this code that there is a simpler payload being passed in this case, just a string
containing the message to be passed.

wileychapter5
New comment posted by
aaron@clearlyinnovative.com

wileychapters

wileychapter5

New comment posted by
aaron@clearlyinnovative.com

FIGURE 11-10: The iOS Notification Center when a comment is added.

var currentUser = Alloy.Globals.currentUser;

push.sendPush ({
payload : {
custom : {},
sound : "default",
alert : "You have a new friend! " + currentUser.get ("email")

b

www.it-ebooks.info

http://www.it-ebooks.info/

312 BUILDING CROSS-PLATFORM APPS USING TITANIUM

to ids : selUser.model.id,
}, function(responsePush) {
if (_responsePush.success) {
alert ("Notified user of new friend");
} else {
alert ("Error notifying user of new friend");
}
)i

Figure 11-11 shows the iOS notification when you've been selected as friend.

Alert

You have a new friend!
aaron@clearlyinnovative.com

Ok

FIGURE 11-11: User is being notified in i0S of a new friend.

Unregistering from Push Notifications
When Logging Out

When the user logs out of the application, the application will unregister the device from the
push notification’s server so it will no longer receive notifications.

Create the exported pushUnsubscribe function in the pushNotifications. js library
file in case there is a need to unsubscribe a user from a channel from outside of the library.
This function takes a parameter called data, which is a JavaScript hash comprised of the
channel to unsubscribe from and the specific device token. If you look at the Appcelerator
documentation, you will see that this is a simple wrapper around the Cloud Services API call.

You use the callback parameter to return the response data and a response flag of suc-
cess that is set to true or false.

Add the following code to the pushNotifications.js library file; it will be used in
Chapter 12, when you attempt to log the user out of the system.

exports.pushUnsubscribe = function(data, _callback) {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11 PUSH NOTIFICATIONS

Cloud.PushNotifications.unsubscribe (_data, function(e) ({
if (e.success) {

Ti.API.debug('Unsubscribed from: ' + data.channel);
_callback ({
success : true,

error : null
1)
} else {
Ti.API.error ('Error unsubscribing: ' + _data.channel) ;
Ti.API.error (JSON.stringify (e, null, 2));
_callback ({
success : false,
error : e

Further Integration of Push Notifications

in Your Application

Push notifications can send payloads that contact additional information so the application
can perform a specific action based on the notification. In the example code provided, you
are passing photo_id when the push notification is sent, which indicates that a new photo
has been posted. You could potentially modify the application to show the specific photo
that has been added to the application. When a new comment notification is received, you
could have the application open to the specific photo associated to the comment so the user

can see the most recent comments.

These are just two examples of the increased usability that can be added to the application
logic to enhance the capabilities of the notifications system within your application. The
sample code provided along with this chapter is a good starting point to add similar solutions

to the final application you decide to build.

www.it-ebooks.info

313

http://www.it-ebooks.info/

314

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Summary

The addition of push notifications to this sample application allows for interaction between
the application’s users and gives the users a reason to return to the application, which is criti-
cal to the success of your application.

Appcelerator Cloud Services has provided the APIs and cross-platform solution to allow you
to seamlessly integrate the functionality into your mobile applications with minimal effort.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter
Settings and User Management

THE SETTINGS TAB is the final tab in the application. This tab allows the user to perform
the following functions. This is not an exhaustive list of settings for an application like this
but it gives you an idea of what can be accomplished using the Appcelerator framework and
Appcelerator Cloud Services.

m View and update the photo associated with the account

m View the count of friends and followers

m View the count of photos uploaded

m Turn off friends’ push notification

m Login/out of Facebook

m Login/out of Twitter
Most of these features will be implemented by enhancing code that has already been written
to provide you with additional information. There will be some enhancement to the share
library and the push notifications library as well as an introduction to a JavaScript library g

that can resolve common issues found when developing code with a lot of asynchronous

callbacks.

Getting Started: View, Style, Controller

By now the process for creating windows for applications using the Alloy Framework should
be pretty familiar to you. Let’s start by opening the settings.xml view file and adding the
code to construct the user interface to match the wireframes created in the earlier chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

316

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Editing the View
First you will need to add the Logout button to the title bar for the iOS version of the application;

remember when adding platform-specific code, you will need to specify the platform attribute in
the view element. As a child of the window element, you will add the RightButton element.

<RightNavButton platform="ios">
<Button id='logoutBtn's>Logout</Buttons>
</RightNavButton>

After the button element is added, you will start to layout the main containers of the setting
window, the header and the mainBody, and those names will correspond to the object IDs
you will use in the controller file, which are settings.js and the settings. tss style file.
These two elements will be represented with views. The final element at this level of the view
hierarchy is the Refresh button, which will be used to update the contents of the window by
querying Appcelerator cloud services for the latest information.

After adding the code for the main views, your settings.xml file should look similar to this:

<Alloy>
<Tab title='Settings'>
<Window title='Settings's>
<RightNavButton platform='ios'>
<Button id='logoutBtn's>Logout</Buttons>
</RightNavButton>
<View id='header'>

</View>
<View id='mainBody's>
</View>
<Button id='refreshBtn's></Button>
</Window>
</Tab>
</Alloy>

Editing the User Information in the Header Section

First you will get all of the information on the user and display it in the header sections and then
you will circle back and add all of the push notifications and social media settings in the view.

In the heading section, you want to display the avatar for the current user, the full name of the
user, and Appcelerator Cloud Services information, such as the number of photos they have
taken and the number of friends they have. You will add all of the user interface elements in
the settings.xml file and then handle the layout and styling in the settings.tss file.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT 317

For the avatar, add an ImageView element and set the ID to profileImage. Next is the
Label element, which will hold the full name of the user and then there are labels for the
number of photos and the number of friends that are associated with the user. In order to
get the labels and the values lined up properly, you will wrap the title and value labels into a
view. After adding the code to the settings.xml, the contents of the header element
should look like this.

<ImageView id='profilelImage's></ImageView>
<View id='statsBox'>
<Label id='fullname' class='left4dp toplodp'> </Label>
<View class='hdrBox left4dp's>
<Label class='hdrLabel'>Photos:</Label>
<Label class='hdrCount' id='photoCount'>0</Label>
</Views>
<View class='hdrBox left4dp bottomlOdp'>
<Label class='hdrLabel's>Friends:</Label>
<Label class='hdrCount' id='friendCount'>0</Label>
</View>
</View>

Editing the User Information Style

You need to apply some styles to the elements in order to get the Ul to match the mockups.
You can always add the style information directly to the settings.xml file, but it is better
to add the information to settings.tss.

Open the settings. tss file in the styles directory and set some basic style information on
the high-level elements:

"View' : {
layout : 'horizontal',
width : Ti.UI.FILL,
height : Ti.UI.SIZE,
I
"Window' : {
layout : 'vertical',
height : Ti.UI.FILL
b
"Label' : {
color : '#444'

www.it-ebooks.info

http://www.it-ebooks.info/

318

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Next, you can start to specify specific styles for the elements in the view using their IDs; this

is done by creating a style like the following,.

'#header' : {

horizontalWrap : false

b

'#logoutBtn'

bottom: '10dp’

b

'#profileImage’ {
top : '13dp',
left : '10dp',
width : '100dp"',
height :'100dp',
borderColor '#CCC',
border : '1ldp'

b

'#statsBox' : {
layout : 'vertical',
top : '20dp',
left : '&dp',
right : '5dp',
borderColor "#CCC"',
borderwidth '1dp',

horizontalWrap : false

b

// for some reason, the 'right' property is not working on android
// https://jira.appcelerator.org/browse/TIMOB-15525

'#statsBox [platform=android] ' : {
layout : 'vertical',
top : '20dp',
left : 'sdp’',
width : '65%"',
height : Ti.UI.SIZE,
borderColor "#CCC',
borderWidth '1dp"',

horizontalWrap : false

b

"#fullname' : {
bottom : '2dp',
textAlign 'left’,
color 'H#444",

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT

font : {
fontSize : '18dp’',
fontWeight : 'bold!’
}

As you can see from this code, we have created an individual style setting for each of the ele-
ments in the header section of the page. For the counters, you will use style classes to control
the layout instead of using specific styles applied based on object IDs. You will create classes
called hdrBox, hdrLabel, and hdrCount that will be applied to the view elements to get
the desired outcome. There are also a few helper classes you need to add to settings.tss
to properly align the views and labels in the window. See Figures 12-1 and 12-2.

".leftadp' : {
left :'4dp',

|

'.toplOodp' : {
top :'l0dp',

¥

'".bottomlodp' : {
bottom :'10dp',

.hdrBox' : {
.hdrLabel' : {
left : 'odp',
textAlign : 'left!',
font : {
fontWeight : 'bold',
fontSize : 'lédp’

}
}

}I
'.hdrCount' : {
font : {
fontSize : 'lédp',

The refreshBtn is in the settings.xml file, so you can add the styling for that to the
settings.tss file since it is only a few properties. You will need to include the platform-
specific styling for the height of the button on Android.

www.it-ebooks.info

319

http://www.it-ebooks.info/

320 BUILDING CROSS-PLATFORM APPS USING TITANIUM

"#refreshBtn' : {
top : '50dp',
width : '80%"',
height : '32dp’',
title : 'REFRESH COUNTS'
I
'#refreshBtn[platform=android] ' : {
height : '42dp’',

b

Carrier & 10:28 PM

Settings

Photos:0
Friends:0

REFRESH COUNTS

Settings

FIGURE 12-1: Screenshot of header layout on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT

QXY YY N MY 7 ¢ 4[11036PM

5
“ALLOY.

FRIENDS SETTINGS

Photos:0
Friends:0

REFRESH COUNTS

FIGURE 12-2: Screenshot of header layout on Android.

Handling Logout on Android and iOS

On i0S, the Logout button is available in the navigation bar to allow the users to log out of
the application. As you have done on the Feed tab, you need to add some code to set up the
menu on the ActionBar when the user views the Settings tab. In this menu, you will enable
the users to log out of the application.

Add the following code to the index. js controller file inside of the activity.onCreate
OptionsMenu handler in the function doOpen:

if ($.tabGroup.activeTab.title === "Settings") ({
menultem = e.menu.add ({

www.it-ebooks.info

321

http://www.it-ebooks.info/

322

BUILDING CROSS-PLATFORM APPS USING TITANIUM

title : "Logout",
showAsAction : Ti.Android.SHOW _AS ACTION ALWAYS,
I3
menultem.addEventListener ("click", function(e) {
$.settingsController.handleLogoutMenuClick() ;

3K

} else if ($.tabGroup.activeTab.title === "Feed") {
// remains same
} else {

// remains same

This will add the menu item on the Android ActionBar in the Settings tab and assign the
event handler for the menu selection to a function called handleLogoutMenuClick. The
function handleLogoutMenuClick will call the same function as when the user clicks on
the Logout button in the Settings tab’s navigation bar.

You can now start to add the basic event listeners for the buttons and window actions. To
enable users to update their avatars by clicking on their profile images, you need to add an
event listener for a click on the profileImage view element.

Add the following code to the settings. js controller file. You will start to fill out the code
as you move through the remainder of the chapter.

/* EVENT HANDLERS */

/* in I0S we need to support the button click */

0S_IOS && $.logoutBtn.addEventListener ("click",
handleLogoutBtnClick) ;

/* listen for click on image to upload a new one */
$.profileImage.addEventListener ("click", handleProfileImageClick) ;

/* listen for close event to do some clean up */
$.getView () .addEventListener ("close", closeWindowEventHandler) ;

/* listen for Android back event to do some clean up */
$.getView () .addEventListener ("androidback",

androidBackEventHandler) ;

/* keep state of friends connections */
$.connectedToFriends = false;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT

/* keep state of initialization, this prevents the events from
looping */
$.onSwitchChangeActive = false;

$.handleLogoutMenuClick = function(event) {
handleLogoutBtnClick (_event) ;

Vi

function handleLogoutBtnClick (argument) {

}

function handleProfileImageClick (argument) {

}

function closeWindowEventHandler (argument) {

}

function androidBackEventHandler (argument) {

}

Logging the User Out

Let’s start with the primary function of the Settings tab, which is to log out the user. As you
can see, you have connected the menu click action on Android to the button click action from
iOS. This enables you to put all of the logout functionality into the one function called
handleLogoutBtnClick. In this function you will need to do the following:

m Logout of ACS push notification
m Logout of ACS

m Logout of Facebook and Twitter

m Return the application to Login screen

Logging Out of Appcelerator Push Notifications

You will need to import the pushNotifications.js library you used in the previous
chapter and call the logout function that was created. This logout function will unsubscribe
the user from the friends channel and from the platform-specific channel they were sub-
scribed to when logging into the application.

www.it-ebooks.info

323

http://www.it-ebooks.info/

324

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Logging Out from Appcelerator Cloud Services

Using the current user object global variable, Alloy.Globals. currentUser, you will call
the extended method logout that was added to the user model. This function will call the
Appcelerator cloud service’s API to log the user out of the API. The extended function also
cleans up some application-specific properties, specifically the sessionId and the user
object that is saved when the user logs in.

Logging Out from Social Media

Youwill need to import the sharing. j s library to log the user out of all social media accounts.
The sharing library will be modified to add a new function call named deauthorize, which
removes the save credentials from the user’s device. This will force the user to log in again when
restarting the application.

Open sharing.js in the 1ib directory and add the function using this code:

/**
* logs out and clears out any social media information
*/
exports.deauthorize = function() {
Alloy.Globals.TW && Alloy.Globals.TW.deauthorize() ;
Alloy.Globals.FB && Alloy.Globals.FB.logout () ;

bi

Returning to the Login Screen

Each of the tabs in the application is passed in the parent controller, index . j s, which gives
them access to important functions. One of those functions is userNotLoggedInAction.
This function will display the login view for a user to log in to the application and is the exact
behavior you want after the logout is completed.

Bringing all of this functionality together in the handleLogoutBtnClick function, you
add the following code to the end of the settings.js controller file:

function handleLogoutBtnClick(event) {

// push logout
require ('pushNotifications') .logout (function() {

Alloy.Globals.currentUser.logout (function(response) {
if (_response.success) {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT

Ti.API.debug('user logged out');

// clear any twitter/FB information
require ('sharing') .deauthorize() ;

// show login window
$.parentController.userNotLoggedInAction () ;

} else {
Ti.API.error ('error logging user out');

Setting the User’s Profile Picture

The view was created earlier in the chapter with a placeholder for the user’s profile picture.
This picture will be displayed next to comments posted by the user. You will integrate with
Appcelerator Cloud Services to associate an image with the user account and use the
Appcelerator API to interact with the camera on the device. Most of the code in the controller
for working with the camera API should be familiar since it has been covered earlier in

the book.

You will create an event handler function handleProfileImageClick so that when the
users click on the photo, they can select it from the local device using the API call Ti . Media.
openPhotoGallery or take a new photo using Ti.Media.showCamera, which will be
saved and associated with the account. Since the view and style information was done
already, all that is left is to update the settings. js controller file. Add the following code
to the settings. js controller file:

function handleProfileImageClick() ({
var dopts = {
options : ['Take Photo', 'Open Photo Gallery'l],
title : 'Pick Photo Source'

}i

if (0s_108) {
dopts.options.push('Cancel!') ;
dopts.cancel = dopts.options.length - 1;
} else {
dopts.buttonNames = ['Cancel'];

www.it-ebooks.info

325

http://www.it-ebooks.info/

326 BUILDING CROSS-PLATFORM APPS USING TITANIUM

}

var

optionDialog = Ti.UI.createOptionDialog (dopts) ;

optionDialog.addEventListener ('click', function(e) {

var options = {

}i

if

I3F;

success : processPhoto,
cancel : function() {
|
error : function(e) {
Ti.API.error (JSON.stringify(e)) ;
j
allowEditing : true,
mediaTypes : [Ti.Media.MEDIA TYPE PHOTO],

(e.button) {
return;
else if (e.index == 0) {
Ti.Media.showCamera (options) ;
else if (e.index == 1) {

Ti.Media.openPhotoGallery (options) ;

optionDialog.show () ;

}

Add the stub for processPhoto function so you can run the app to get an idea of the
functionality.

function processPhoto(event) {

}

Running the code on iOS, the Settings window and Options dialog should look like
Figure 12-3.

Running the code on Android, the Settings window and Options dialog should look like
Figure 12-4.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT

Pick Photo Source

Take Photo

Open Photo Gallery

Cancel

FIGURE 12-3: Screenshot of the i0S Options dialog for Profile Photo Source on Settings tab.

To actually process the photo, you need to get the image media from the camera or the photo
gallery and then upload it to Appcelerator Cloud Services. The user object from the
Appcelerator Cloud Services has a property called photo that you will use to store the profile
picture.

You will need to update the Alloy sync adapter to support the ability to update the user
object. This is accomplished by using the Appcelerator Cloud Services API call Cloud.
Users.update. The function is implemented in the application in a similar manner as it is
presented in the Appcelerator documentation (see http://docs.appcelerator.com/
titanium/latest/#!/api/Titanium.Cloud.Users).

www.it-ebooks.info

327

http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Users
http://docs.appcelerator.com/titanium/latest/#!/api/Titanium.Cloud.Users
http://www.it-ebooks.info/

328 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Ay YYNR MY T °° 4[11048PM

Take Photo

Open Photo Gallery

Cancel

FIGURE 12-4: Screenshot of the Android Options dialog for Profile Photo Source on Settings tab.

Open the acs . js file in the assets/alloy/sync folder and add the following code to the
function processACSUsers in the switch statement:

case "update":
var params = model.toJSON() ;
Cloud.Users.update (params, function(e) {
if (e.success)
model .meta = e.meta;
options.success && options.success (e.users[0]) ;
model.trigger ("fetch") ;
} else {
Ti.API.error ("Cloud.Users.update " + e.message) ;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT 329

options.error && options.error(e.error && e.message|| e);

}
3N

break;

Using the image from the camera event callback, you can assign the photo property on the
global variable Alloy.Globals.currentUser and save the image. After the image is
saved, you will want to assign it directly to the profileImage view element so the user gets
immediate feedback of the updated image.

Adding a Few Performance Enhancements

Since the cameras on most of the newer phones take high resolution images and you don’t
need anything like that for the profile picture, there is an Appcelerator native module that we
can import to resize the images based on their size. Ti.ImageFactory module is a free
module that can be downloaded in the Appcelerator Marketplace; download the module and
follow the instructions for adding it to your project.

After you install the module, your tiapp .xml file should look Figure 12-5.

006 Mobile Modules (SDK 3.2.3.GA)

Select an item to open (7 = any character, * = any string): v

?

Matching items:

[com.appcelerator.apm [android, ios] - Global {API Ver. 2}
) com.appecelerator.urlSession [ios] - Global {API Ver. 2}
¥ ti.imagefactory [android, ios] - Project {API Ver. 2}

[tizen [tizen] - Global {API Ver. 2}

@ ti.imagefactory. Versions: [2.2.1, 1.1.1] |

[cancel | [oK]

FIGURE 12-5: Screenshot of the tiapp.xml properties page in Titanium Studio showing the
ImageFactory module.

www.it-ebooks.info

http://www.it-ebooks.info/

330 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Resizing the images before uploading to Appcelerator Cloud Services will provide for a much
better user experience since this large image will not get uploaded when only a thumbnail is
needed.

Update the function processPhoto with the following code:

function processPhoto(event) {

Alloy.Globals.PW.showIndicator ("Saving Image") ;
var ImageFactory = require('ti.imagefactory') ;

if (OS_ANDROID || _event.media.width > 700) ({
var w, h;
w = _event.media.width * .50;
h = event.media.height * .50;

$.currentUserCustomPhoto =
ImageFactory.imageAsResized (event.media, {
width : w,
height : h
I3
} else {
// we do not need to compress here
$.currentUserCustomPhoto = event.media;

Alloy.Globals.currentUser.save ({

"photo" : $.currentUserCustomPhoto,
"photo sizes[thumb 100]" : "100x100#",
// We need this since we are showing the image immediately
"photo sync _sizes[]" : "thumb 100",
b A
success : function(model, response) {

// take the cropped thumb and display it
setTimeout (function()

// give ACS some time to process image then get

// updated user object

Alloy.Globals.currentUser.showMe (function(_resp) {
Alloy.Globals.PW.hideIndicator () ;

www.it-ebooks.info

http://www.it-ebooks.info/

b

CHAPTER 12 SETTINGS AND USER MANAGEMENT 331

_resp.model && (Alloy.Globals.currentUser = resp.model) ;
if (_resp.model.attributes.photo.processed) {
$.profileImage.image =
_resp.model.attributes.photo.urls.thumb_100;
alert ("Your profile photo has been changed.");
} else {
$.profileImage.image =
_resp.model.attributes.photo.urls.original;

alert ("Profile photo changed, processing not
complete") ;
// clear out values force refresh on next
// focus if we still dont have an image
$.currentUserCustomPhoto = null;
$.initialized = false;
}
1)

}, 3000);

error : function(error) {

I3F;

Alloy.Globals.PW.hideIndicator () ;

alert ("Error saving your profile " + String(error)) ;
Ti.API.error (error) ;

return;

Getting the basic user information for the page to display the avatar photo when it is avail-
able is done by calling function loadProfileInformation when the window gains focus.
To keep the application from making the API calls to Appcelerator Cloud Services every time
the window gains focus, you set a flag after the first API call. If the user wants to refresh the
information, they can click the Refresh button on the page. The event handler for the Refresh
button will be associated with the same function, which is loadProfileInformation.

Add the event listener for when the page gains focus to the bottom of the settings.js
controller file:

$.getView() .addEventListener ("focus", function() {
setTimeout (function() {

1$.initialized && loadProfileInformation() ;

www.it-ebooks.info

http://www.it-ebooks.info/

332 BUILDING CROSS-PLATFORM APPS USING TITANIUM

S.initialized = true;
}, 200);

)

The function loadProfileInformation will perform quite a few other tasks, but for now
you will add code to show the user photo when the user opens the Settings tab.

Add this code to get started with the function:

function loadProfileInformation() {
Alloy.Globals.PW.showIndicator ("Loading User Information");

// get the attributes from the current user
var attributes = Alloy.Globals.currentUser.attributes;
var currentUser = Alloy.Globals.currentUser;

Ti.API.debug (JSON.stringify (attributes, null, 2));

// set the user profile photo
if ($.currentUserCustomPhoto) {
S.profileImage.image = $.currentUserCustomPhoto;
} else if (attributes.photo && attributes.photo.urls) {
$.profileImage.image = attributes.photo.urls.thumb 100 ||
attributes.photo.urls.original;
} else if (typeof (attributes.external accounts) !==
"undefined") {
$S.profileImage.image = 'https://graph.facebook.com/' +
attributes.username + '/picture';
} else {
Ti.API.debug('no photo using missing gif');
$S.profileImage.image = '/missing.gif';

Alloy.Globals.PW.hideIndicator () ;

You can run the code and set up a profile image for a user, as shown in Figures 12-6
and 12-7.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT

006 i0S Simulator - iPhone Retina (4-inch 64-bit) / iOS 7.1 (11D167)

Carrier = 11:18 PM [

Settings Logout

Photos:0
Friends:0

REFRESH COUNTS

FIGURE 12-6: Screenshot of the iOS User Profile Picture Update on the Settings tab.

Returning to the Feed Controller for
Performance and Ul Enhancement

This performance enhancement can also be added to your feed.js controller. You might
have noticed that on high-resolution cameras when running over 3G or LTE that the upload
performance of the images is not great. You can add the resizing function to feed.js to
provide the user with a much better experience.

Replace the success handler in feed.js controller file in the cameraButtonClicked
method; you can see the addition of the indicator to give the user some feedback that there
is a process going on. Note also the resizing functionality.

www.it-ebooks.info

333

http://www.it-ebooks.info/

334 BUILDING CROSS-PLATFORM APPS USING TITANIUM

[11:48 PM

LOGOUT

FRIENDS SETTINGS

Photos:0
Friends:0

REFRESH COUNTS

FIGURE 12-7: Screenshot of the Android User Profile Picture Update on the Settings tab.

Alloy.Globals.PW.showIndicator ("Saving Image", false) ;
var ImageFactory = require('ti.imagefactory');

if (OS_ANDROID || event.media.width > 700) {

var w, h;

w = event.media.width * .50;

h = event.media.height * .50;

$.resizedPhoto = ImageFactory.imageAsResized (event.media, {
width : w,
height : h

3K

} else {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT 335

// we do not need to compress here
S.resizedPhoto = event.media;

processImage ($.resizedPhoto, function(photoResp) {
if (_photoResp.success) {

// create the row
var row = Alloy.createController ("feedRow", photoResp.model) ;

// add the controller view, which is a row to the table

if ($.feedTable.getData().length === 0)
$.feedTable.setData([]);
$.feedTable.appendRow (row.getView (), true);

} else {
$.feedTable.insertRowBefore (0, row.getView(), true);

//now add to the backbone collection
var collection = Alloy.Collections.instance ("Photo") ;
collection.add(photoResp.model, {

at : 0,

silent : true

3N

// notify followers
notifyFollowers (_photoResp.model, "New Photo Added") ;

} else {
alert ("Error saving photo " + processResponse.message) ;

}
3N
¥

Additional Information from the User Account

The user has photos and friends; you can utilize the User . showMe method’s returned model
object to get the latest information on how many photos the user has taken. Getting infor-
mation about the user’s followers requires a separate Appcelerator Cloud Services API.

www.it-ebooks.info

http://www.it-ebooks.info/

336

BUILDING CROSS-PLATFORM APPS USING TITANIUM

The displayed name can be the first and last name of the user; if that is not provided you will
display the username provided when the account is created. The other information needed is
the friend count. Calling the method User.getFriends, which was added to the user
model in the previous chapter, can give you that information. This can be accomplished with
the following code, which you add to the loadProfileInformation function in the
settings.js controller file:

// get the name for display
if (attributes.firstName && attributes.lastName)
$.fullname.text = attributes.firstName + " " +
attributes.lastName;
} else {
$.fullname.text = attributes.username;

// get the user object from server and the photo count
currentUser.showMe (function (_ response) {
if (_response.success) {
$.photoCount . text =
_response.model.get ("stats") .photos.total count;
} else {
alert ("Error getting user information") ;

// get the friends count
currentUser.getFriends (function(response2) {

if (_response2.success) {
$.friendCount.text = response2.collection.length;
} else {

alert ("Error getting user friend information") ;

Alloy.Globals.PW.hideIndicator () ;
I3F;
I3F;

The last thing you'll want to do before working on the next set of data to integrate in the Settings
page is to wire up the Refresh Counts button. There might be a more elegant way to implement
this feature, but for updating the user information without constant API calls to server, this
approach leaves it to the user to initiate the API call. See Figure 12-8 for the completed section.

/* listen for click on refreshBtn to refresh data */
$.refreshBtn.addEventListener ("click", loadProfileInformation) ;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT

Carrier ¥ 12:01 PM L_J

Settings Logout

clearlyinnovative
Photos:3
Friends:10

REFRESH COUNTS

Settings

FIGURE 12-8: The Header section of Settings tab is complete.

Adding Content to the Main View in the Settings Tab

The last section to complete on the Settings tab is the content you will be adding to the
mainBody element in the settings.xml view file. In this section, you will be displaying the
social media status in Facebook and Twitter and the status of push notifications, on or off.

The way you will lay out the screen is with a section heading, a separator, and then the appro-
priate switch for the user to turn the functionally on or off. You can add the following code to
the settings.xml view file for laying out the controls in the window:

<View id='mainBody'>
<Label class='sectionHdr top20dp'>Social Media</Label>
<View class='sectionSeparator'/>
<View class='switchContainer'>
<Label class='switchLabel'>Facebook Status</Labels>
<Switch id='facebookBtn'

www.it-ebooks.info

337

http://www.it-ebooks.info/

338 BUILDING CROSS-PLATFORM APPS USING TITANIUM

onChange="'onSwitchChange'></Switch>
</Views>
<View class='switchContainer'>
<Label class='switchLabel'>Twitter Status</Labels>
<Switch id='twitterBtn' onChange='onSwitchChange'></Switch>
</Views>
<Label class='sectionHdr toplOdp'>Push Notification</Label>
<View class='sectionSeparator'/>
<View class='switchContainer's>
<Label class='switchLabel's>Notifications Status</Labels>
<Switch id='notificationsBtn'
onChange="'onSwitchChange'></Switch>
</Views>
</Views>

Platform-Specific User Interface for Switch Control

The switch control looks different and requires different properties based on the platform
you are using. To address this issue you will be using the platform selectors in the
settings. tss style file to specify the behavior based on the platform. You can add the
following code to the bottom of the settings.tss style file for the setting window
to get the user interface to look like the mock-ups.

'#mainBody' : {
layout : 'vertical'

}

'.top20dp' : {
top :'20dp',

}

'.sectionHdr' : {
width : Ti.UI.FILL,
height :Ti.UI.SIZE,

color : '#444',
font : {
fontWeight : 'bold',
fontSize : 'lé6dp',
}
b
' .sectionSeparator [platform=ios]' : {
width : '80%"',
height :'ldp’',
backgroundColor : '#CCC'

b

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT 339

' .sectionSeparator [platform=android] ' : {
width : '90%"',
height :'ldp’',
backgroundColor : '#CCC'
I
' .switchContainer [platform=ios]' : {
top : '4dp',
height : '38dp',
layout : 'horizontal',
width : '100%"',
I
' .switchContainer [platform=android] ' : {
top : '4dp',
height : Ti.UI.SIZE,
layout : 'horizontal',
width : '100%"',
b
'.switchLabel' : {
textAlign : 'right',
left : 0,
right : '30dp',
width : '60%"',
color : '#444',
center : ({
y : '50%"'
b
b
'Switch[platform=android] ' : {
titleOn: 'Enabled',
titleOff: 'Disabled',
value:true,
width: '100dp',
height:'44dp"

b

'Switch[platform=ios]' : {
value : true, // mandatory property for i0S
left : '8dp',
height : '28dp',
center : {
vy : '50%"

b

www.it-ebooks.info

http://www.it-ebooks.info/

340

BUILDING CROSS-PLATFORM APPS USING TITANIUM

You will also need to add the stub for the switch change to the event listener that you added
in the settings.xml view. You will fill the code in later, but adding the stub now will allow
you to run the code to see what the layout looks like. Add this code to settings.js con-
troller file.

function onSwitchChange(event) {

}

When you run the code, you'll see something like Figure 12-9 on iOS and something like
Figure 12-10 on Android.

Carrier ¥ 12:14 AM 2

Settings Logout

clearlyinnovative
Photos:0
Friends:1

Social Media

Facebook Status

Twitter Status

Push Notification

Notifications Status

REFRESH COUNTS

Settings

FIGURE 12-9: Final application looks like this on iOS.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT 341

AB1218AM

LOGOUT

FRIENDS SETTINGS

bsaunders@mail.com

Photos:0
Friends:0

Social Media

Facebook Status Enabled

Twitter Status Enabled

Push Notification

Notifications Status Enabled

REFRESH COUNTS

FIGURE 12-10: Final application looks like this on Android.

Handling the Switch Initialization Values

You added the controller variable onSwitchChangeActive to indicate if the switch event
listener was activated. You will initialize the value to false when starting the controller so the
initial values for all of the switches can be set. You will also set it to false when responding to
a user action to make sure the event isn't looping. Add this line of code as the last line in the
loadProfileInformation function:

$.onSwitchChangeActive = true;

Initialize all of the social media switches to false at the top of the settings. js controller file.

www.it-ebooks.info

http://www.it-ebooks.info/

342

BUILDING CROSS-PLATFORM APPS USING TITANIUM

S.twitterBtn.value = false;
$S.facebookBtn.value = false;

The Switch control in Appcelerator fires the change event whenever the value is changed,
even if changed programmatically.

In the loadProfileInformation function you created in the previous section, you can
add the following code to properly set the Twitter and Facebook status for the current user.

// load the social media settings
$.twitterBtn.value = Alloy.Globals.TW.isAuthorized() ;
$.facebookBtn.value = Alloy.Globals.FB.getLoggedIn() ;

The Twitter check is accomplished by calling the isAuthorized method on the Twitter
library you included in the social media section. The getLoggedIn function is part of the
Appcelerator Facebook module.

To activate the social media libraries, you will use the onSwitchChange event listener han-
dler; in that function you will create a switch statement that will take the appropriate action
based on the ID of the control that fired the change event. Each switch that was added to the
settings.xml view file has a unique identifier based on the social media library it refer-
ences. The pattern is to check if the specified social media account was active/authorized and
if it is when the function is called, then deactivate/logout. Both of the social media libraries
can perform the action, so the following code should be self-explanatory.

Add the sharing. js library to the settings.js controller file:

var sharing = require ("sharing") ;

Add this code to the settings.js controller file:
function onSwitchChange (_event) ({
// dont respond to events until initialization is completed
if ($.onSwitchChangeActive === false)
return;

$.onSwitchChangeActive = false;

var selltem = event.source;

www.it-ebooks.info

http://www.it-ebooks.info/

343

CHAPTER 12 SETTINGS AND USER MANAGEMENT

switch (selItem.id) {
case "notificationsBtn"

break;
case "twitterBtn":
if (Alloy.Globals.TW.isAuthorized() === false
|| selItem.value === false) {
Alloy.Globals.TW.authorize (function(response) {
selItem.value = response.userid ? true:false;
activateOnSwitchChange () ;
3N
} else {
Alloy.Globals.TW.deauthorize () ;
selItem.value = false;
activateOnSwitchChange () ;
}
break;
case "facebookBtn":
if (Alloy.Globals.FB.getLoggedIn() === true) ({

Alloy.Globals.FB.logout () ;

selItem.value = false;

activateOnSwitchChange () ;

} else {

var sharing = require ("sharing") ;

sharing.prepForFacebookShare (function(success) {
selItem.value = success;
activateOnSwitchChange () ;

You will also need this helper function to reactivate the listener after the application is done
responding to the change event from the user clicking on the switch:

function activateOnSwitchChange () {

setTimeout (function() {
$.onSwitchChangeActive = true;
}, 200);

www.it-ebooks.info

http://www.it-ebooks.info/

344

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Displaying Push Notification Status

The push notification status update is the last piece of information that is manageable from
this Settings tab. The Appcelerator Cloud Services API does not provide a function in the ti .
cloud. js library to provide that information, so you will need to leverage the REST API
that is provided by Appcelerator Cloud Services. This further demonstrates the overall flexi-
bility of the platform and API; you can extend and customize as needed.

The API call that you will use is the query . json endpoint on the push _notifcation APL
The call is done by using the Appcelerator Ti . Network.createHTTPClient function call
to make a get request to the APIL. This request requires the user.id and the client id
from Appcelerator Cloud Services. The user. id you will get from the currentUser object
and the client_id property you will get from the tiapp .xml file.

When you enable cloud services in your project on project creation, Titanium Studio will add
the production and development keys to the tiapp.xml file. Those values are treated a prop-
erties and are accessible using the Appcelerator API call Ti.App.Properties.getString
and then use the key "acs-api-key-development" or "acs-api-key-production",
depending on the environment you are in.

Now that you can determine the environment appropriately, you can add the following func-
tion to the pushNotifications.js library file:

exports.getChannels = function(user, callback) {
var xhr = Ti.Network.createHTTPClient () ;
// create the url with params

// get the environment specific Key

var isProduction = Titanium.App.deployType === "production";
var acsKeyName = "acs-api-key-" +
(isProduction ? "production" : "development") ;

// construct the URL

var url =

"https://api.cloud.appcelerator.com/vl/push notification/query.
json?key=";

url += Ti.App.Properties.getString(acsKeyName) ;

url += "&user id=" + _user.id;

xhr.open ("GET", url);

xhr.setRequestHeader ('Accept', 'application/json') ;
xhr.onerror = function(e) {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT

alert (e) ;
Ti.API.info(" " + String(e));
Vi
xhr.onload = function() {
try {
Ti.API.debug(" " + xhr.responseText) ;
var data = JSON.parse (xhr.responseText) ;
var subscriptions = data.response.subscriptions[0];
Ti.API.info (JSON.stringify (subscriptions)) ;

_callback && _callback ({
success : true,
data : subscriptions,
1)
} catch(E) {
Ti.API.error (" " + String(E));

_callback && _callback ({
success : false,
data : null,
error : E

Now that the function is in place, you will put it to use in the settings. js controller file to
set the status of push notification visually through the switch user interface element.

Add the push notification library to beginning of the settings. js controller file:

var pushLib = require ('pushNotifications');

Then in the callback of the controller in loadProfileInformation, add the call to get the
channels that the user is subscribed to; you are looking for the friends channel to indicate
if the switch should be turned on or off. Add the following code inside the success callback of
the currentUser.getFriends function:

pushLib.getChannels (currentUser, function(response3)
var friendActive;

www.it-ebooks.info

345

http://www.it-ebooks.info/

346

BUILDING CROSS-PLATFORM APPS USING TITANIUM

if (_response3.success) f{

$.connectedToFriends = (_.contains(response3.data.channel,
"friends") !== -1);
$.notificationsBtn.value = $.connectedToFriends;
} else {

S.notificationsBtn.value = $.connectedToFriends = false;

Compile and run your project. You should get visual information regarding push notifica-
tions on the friends channel. Next, you will add the functionality to allow the users to turn
notifications on and off.

Running the code should look like the previous figures; however, changing the status of the
switch from on to off will enable the functionality.

Changing the Push Notification Status

The push notification status indicates whether the user has subscribed to a specific channel.
The channel status that you are displaying is the friends channel. In the previous section
you made a function that queried Appcelerator Cloud Services to see if the current user is
subscribed to the channel. In this section, you will use the ti . cloud. js function to unsub-
scribe the users from the friends channel when they select the disabled or off status from
the push notifications switch.

Add the following code to the notificationsBtn switch in the onSwitchChange func-
tion of the settings. js controller file:

case "notificationsBtn"
if ($.connectedToFriends === true) {
pushLib.pushUnsubscribe ({
channel : "friends",
device token : Alloy.Globals.pushToken
}, function(_ response) {
if (_response.success) {
// unsubscribe worked
selltem.value = $.connectedToFriends = false;
activateOnSwitchChange () ;
}
I3
} else {
pushLib.subscribe ("friends", Alloy.Globals.pushToken,
function (_response) {

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12 SETTINGS AND USER MANAGEMENT

if (_response.success) ({
// subscribe worked
selItem.value = $.connectedToFriends = true;
activateOnSwitchChange () ;

3N
}

break;

Calling the pushUnsubscribe function, all you have to do is pass the name of the channel
to unsubscribe from along with the pushtoken. The Alloy.Globals.pushToken is set
when the application configured and connected the user’s device to the push notification
server.

When the call is completed, you will see that the function updates the value of the switch to
reflect the current status of push notifications. When the users unsubscribe from the chan-
nel, they will no longer receive notifications, but the notifications will still be sent out.

Summary

This is the last tab in the application, so you should be all done with a functioning cross-
platform application using Appcelerator Alloy and Appcelerator Cloud Services. The Settings
tab allows you to configure the application and view status of integrations with social media
and push notifications.

The Feed tab allows you to list the photos you have taken, comment on the photos, share
your photos, and see the location where the photo was taken. The Feed tab also allows you to
view photos close to your current location.

The Friends tab shows users who have the app and users you can select to follow.

This app is fully integrated with Appcelerator Cloud Services and is a good start for more
advanced functionality and integration with Appcelerator and other third-party systems.

This app follows some of the best practices using the MVC framework Appcelerator Alloy,
which will assist you in writing well structured and maintainable cross-platform mobile solu-
tions. Chapter 13 discusses deploying your solution on the iOS App Store and on the Google
Play Store.

www.it-ebooks.info

347

http://www.it-ebooks.info/

348 BUILDING CROSS-PLATFORM APPS USING TITANIUM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter

Going to Market: Deploying to the
App Store and to Google Play

THE DISTRIBUTION PROCESS for deploying your application to the Google Play Store
and Apple App Store is pretty well documented on the Appcelerator website. The process is
outlined briefly in this chapter, and more detailed step-by-step instructions and FAQs can be
found on the Appcelerator site at http://docs.appcelerator.com/titanium/3.0/
#!/guide/Preparing for Distribution.

Process Overview

This chapter describes how to deploy your cross-platform mobile app to the App Store and
Google Play. The overall process is similar for both stores and is outlined here.

Registering for a Developer Account

The i0S Developer Program costs $99 per year and a Google Play Developer account costs
$25. This barrier to entry is supposed to raise the minimum quality level of app submissions.

Signing Your Application

Signing with a digital certificate proves your identity as the developer of your app. You
will create a CSR and sign the application with a certificate to which only you have the
private key.

www.it-ebooks.info

http://docs.appcelerator.com/titanium/3.0/#!/guide/Preparing_for_Distribution
http://docs.appcelerator.com/titanium/3.0/#!/guide/Preparing_for_Distribution
http://www.it-ebooks.info/

350 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Creating an App Record and Filling Out Metadata

Each store requires certain metadata and image assets. Now is a good time to start putting
together some general information to smooth out the process:

®m App name

m Description (up to 4,000 characters)

m Keywords

m Large app icon (1024x1024 for iOS and 512x512 for Android)

m Screenshots (at least one 3.5-inch and one 4-inch for iOS; any two screenshots for

Android)

Publishing Your Binary to the Store

You can create binaries for store submission directly from Titanium Studio. A publishing
wizard steps you through the process of locating the certificates you created earlier.

iOS App Store Submission Process
Follow the steps outlined in this section to publish your app to the iOS App Store.

Signing Up for an iOS Developer Account

This is simply an online checkout process where you add the iOS Developer Program to your
cart and pay using a credit card. Go to https://developer.apple.com/programs/
ios/ and click Enroll Now.

When you have completed this process, you will receive notification for signing up for the
Apple Developer Program and iTunesConnect. The iTunes Developer Program website is
where you manage the development-related activities, whereas iTunesConnect is for manag-
ing store-related activities.

Signing Your iOS Application
This is split into three separate steps:

m Creating your application ID
m Creating a distribution certificate for the application

m Creating a distribution provisioning profile for your application

www.it-ebooks.info

https://developer.apple.com/programs/ios/
https://developer.apple.com/programs/ios/
http://www.it-ebooks.info/

CHAPTER 13 GOING TO MARKET: DEPLOYING TO THE APP STORE

These steps are pretty well documented in the Appcelerator website and also on Apple’s
Developer Member Center; there are no Appcelerator-specific adjustments required in this
process. See the respective sites for details.

Creating an iTunes Connect Record

The iTunesConnect record will hold all of the information required to publish your binary to
the App Store. You create the record first so Appcelerator IDE can associate the application
binary with the record for you.

These steps are pretty well documented in the Appcelerator website and also on Apple’s
Developer Member Center; there are no Appcelerator-specific adjustments required in this
process. See the respective sites for details.

After you follow all of the steps, you know your process is completed when you see the
“Waiting for Upload” message appear as the app status in iTunesConnect.

Publishing from Titanium Studio

Right-click your project and then choose Publish &> Distribute - Apple iTunes Store, as shown
in Figure 13-1.

New >
New From Template >
Co Into

Node.ACS

> |
& Publish > @ Distribute - Apple iTunes Store

Build > (% Distribute - Ad Hoc/Enterprise
Show In > ¢ Distribute - Android App Store
[Copy #®C Configurations...

FIGURE 13-1: The Publish menu in Titanium Studio.

You'll see the screen in Figure 13-2. You must belong to the iOS Developer Program to pro-
ceed further.

www.it-ebooks.info

351

http://www.it-ebooks.info/

352

BUILDING CROSS-PLATFORM APPS USING TITANIUM

800, _ Distribute

Distribute

Distribute app via Apple App Store

General

Before packaging your app for distribution via the Apple App Store, you must complete
the following steps.

After packaging, you will need to take the package and submit it via the iOS Developer
website.

Your archive will appear in the Xcode Organizer.

© Downloadiversion 10.0 (or greater) of iTunes.
Ensure the version is compatible with the specified iOS SDK.

@ Sign up for the iOS Developer Program

To distribute applications, you must join the iOS Developer Program or an eguivalent
program

@ Select SDK Version: | 7.0.3 ¢)

 Enable JavaScript Minification

@ <Back | [[ONext>) [Cancel | Publish

FIGURE 13-2: Distribute wizard: General.

Click Next to see screen Figure 13-3, which deals with certificates. For Select Distribution
Certificate, choose the Distribution Certificate you created eatlier in the Member Center. For
Select Keychain, use the system defaults.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 GOING TO MARKET: DEPLOYING TO THE APP STORE

T T e 1 (1) o o— —— |
Certificates @
Obtain and specify a Distribution Certificate @

Certificates

All iOS applications must be signed by a valid Distribution Certificate before they can be
packaged for the Apple app store or distributed via Ad Hoc/Enterprise.

() Obtain WWDR Intermediate Certificate from Apple

The Apple Worldwide Developer Relations (WWDR) Intermediate Certificate is required
to validate distribution certificates.

Obtain Distribution Certificate from Apple. Follow the instructions to install the
certificate.

a

©
© Select Distribution Certificate: | Robert Chen (XMBBQU2VF8)
©

Select Keychain: [system Defaults 2
Refresh
@ [<Back | [[oNext>] [cancel | Publish

FIGURE 13-3: Distribute wizard: Certificates.

For Select Provisioning Profile, choose the distribution provisioning profile you created ear-

lier in the Member Center. See Figure 13-4.

www.it-ebooks.info

353

http://www.it-ebooks.info/

354

BUILDING CROSS-PLATFORM APPS USING TITANIUM

B.0.0 e Distiibute,. e —
Provisioning @
Obtain and specify a Distribution Provisioning Profile (=

Provisioning)

A Provisioning Profile is a collection of digital entities that enables an app for Apple App
Store or Ad Hoc/Enterprise distribution.

Each Distribution Provisioning Profile will contain a set of iOS Distribution Certificates,
Unique Device Identifiers and an App ID.

(© Obtain your Distribution Provisioning Profile from Apple T
Once the profile is downloaded, you may install it via Studio:

© select Provisioning Profile: [com.robcornerstone.therockpc (Rock PC distribution | +]

Refresh
@ < Back Next > [cancel | [Publish |

FIGURE 13-4: Distribute wizard: Provisioning.

When you're prompted to access the keychain, click Always Allow. See Figure 13-5.

codesign wants to sign using key “Rock PC
publishing certificate” in your keychain.

Do you want to allow access to this item?

@ [Always Allow] [Deny][Allow J

FIGURE 13-5: Always allow keychain access.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 GOING TO MARKET: DEPLOYING TO THE APP STORE

355

You may see the System Preferences open. If so, click OK. See Figure 13-6.

6606 Accessibility

(2] @

Seeing
|_|Invert colors

Dicplav -
e Dt

@ Zoom

Enhance Contrast: ||
1 1 i 1 1

r@ Audio

|
Maximum

| . Normal

@ VoiceOver

Hearing Cursor Size: v | | | ;
Mormal Large

m Captions |

Interacting

for assistive devices”

|| Show Accessibility status in me|

FIGURE 13-6: System Preferences Accessibility window.

Ul element scripting is not enabled. Check "Enable access

e | [0

You should see that the project was built successfully based on the output displayed on the

console, as shown in Figure 13-7.

Launcning Acode: /AppLications/Acoae.app
Packaging complete
Project built successfully in 2m 26s 937ms iOS Distribution

LANrUy @
[INFO] :
[INFO] :

| Apple iTunes Store distri

FIGURE 13-7: Success message from Titanium Studio.

Uploading Your Binary to the App Store

When the build is complete in Titanium Studio, you will see that Xcode has launched into the

Organizer; see Figure 13-8.

Click the Archives tab, select the application you just built, and click Distribute. Follow the
prompts to complete the validation of your application and submission to the App Store.

www.it-ebooks.info

http://www.it-ebooks.info/

356 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Devices Projects Ar:hiv:s‘
The Rock PC
The Rock PC —
‘ Archive Type: 105 App Archive | validate.. |
Creation Date: April 7, 2014 at 2:14 PM [Distribute... |
a Version: 1.0.0 -
Identifier: com.robcornerstone.thereckpe
Estimated App Store Size: | Estimate Size
Q- Name
Name - Creaticn Date * Comment Status
[The Rock PC April 7, 2014 at 2:14 PM

FIGURE 13-8: The Archives tab in the Xcode Organizer.

Over the next few days (exact timing will vary), keep an eye on status changes. Once you see
“Ready for Sale,” your app is live. Here are the various status changes you will see:

m Upload Received

m Waiting For Review

m In Review

m Processing for App Store

m Ready for Sale

For your first app version, you can control the exact launch date of your app by manipulating
the availability date. Version updates give you the option of releasing manually.

Google Play Submission Process
Follow the steps outlined in this section to publish your app to the Google Play Store.

Signing Up for a Google Play Developer Account

Similar to the iOS Developer Program, this is a checkout process where you purchase a
Developer Account. Visit the following link to get started: https://play.google.com/
apps/publish/signup/.

Select the I Agree checkbox and click Continue to Payment. See Figure 13-9.
Next you will see a standard credit card form. Complete the form and click Buy.

After the purchase is complete, fill out a form with some basic personal information. Click on
Complete Registration when you're finished. See Figure 13-10.

www.it-ebooks.info

https://play.google.com/apps/publish/signup/
https://play.google.com/apps/publish/signup/
http://www.it-ebooks.info/

CHAPTER 13 GOING TO MARKET: DEPLOYING TO THE APP STORE

BEFORE YOU CONTINUE...

=)
Read and agree to the Google Play Developer
distribution agreement

(Il agree and | am willing to associate my
account registration with the Google Play
Developer distribution agreement.

Continue to payment

FIGURE 13-9: Accept the developer agreement.

k/ Google play | Developer Console

Sign-in with your Google Accopt Developer Pay Registration Fee
account Agreoment
YOU ARE ALMOST DONE...

Just complete the following details. You can change this information later in your account settings if you need to.

DEVELOPER PROFILE

Developer name *

0.0f 50 characters

Emall address *

Website

Phone Number *

Why do we ask for your phone number?

Complete your Account
dotalls

Fields marked with * need 1o be filled before saving.

The developer name will appear to users under the name of your application.

Include plus sign, country code and area code. For example, +1-800-555-0199.

Email updates 0 Idlike t i i and

Complete registration

FIGURE 13-10: Complete the Account details.

Now you have access to the Developer’s Console: https://play.google.com/apps/
publish. Click on Publish an Android App on Google Play to create an app store listing. See

Figure 13-11.

www.it-ebooks.info

357

https://play.google.com/apps/publish
https://play.google.com/apps/publish
http://www.it-ebooks.info/

358

BUILDING CROSS-PLATFORM APPS USING TITANIUM

> Google play | Developer Console

& >
o U
Publish an Android App on Google Play Use Google Play game services
If you need help with the details, have a look at the Add social gaming features to your games on
Getting started guide. Android, i0S and the web. Leam more

Are you working in a team? If you are planning to create paid apps orin-app
Invite co-w o the Developer Console. products, you'll need to set up a merchant account.

FIGURE 13-11: The developer’s console.

Learn more about publishing Android apps from Google’s documentation at https://
developer.android.com/distribute/googleplay/publish/register.html.

Follow the prompts to fill out the information for the application. You will be using the meta-
data you captured earlier in the process and setting images for the icon and display of the
application in the Google Play Store.

Generating a Keystore for Publishing

There are two ways to deploy an application: in debug mode and in release mode. Both
involve signing your APK with a digital certificate. Note that the APK is not encrypted; it is
only signed to identify the developer. Titanium transparently takes care of the signing pro-
cess in debug mode. The tradeoff is that the target device must be configured to developer
mode.

Release mode needs to be used for Google Play. The APK is signed with a digital certificate, to
which you as the developer have sole access to the private key. This certificate cannot be
forged, so users can rest assured that app updates originate from you. This also means that
you lose the ability to update your app if you lose the private key.

Seehttp://developer.android.com/tools/publishing/app-signing.html for
more information.

www.it-ebooks.info

https://developer.android.com/distribute/googleplay/publish/register.html
https://developer.android.com/distribute/googleplay/publish/register.html
http://developer.android.com/tools/publishing/app-signing.html
http://www.it-ebooks.info/

CHAPTER 13 GOING TO MARKET: DEPLOYING TO THE APP STORE

A keystore is a local database containing private keys and public certificates. You'll need to
create a keystore for your app named myApp:

cd ~/Documents
keytool -genkeypair -v -keystore myApp.keystore -alias myApp -
keyalg RSA -sigalg SHAlwithRSA -validity 10000

In this example, you are creating a file located at ~/Documents/myApp.keystore.
Titanium will need this location later.

The -alias used is myApp. Titanium will ask for the alias.

The -validity 10000 is the length in days, which works out to 27 years (and exceeds the
25-year requirement).

Fill out the certificate information as follows:

What is your first and last name?
[Unknown] : John Doe

What is the name of your organizational unit?
[Unknown] : myCompanyName

What is the name of your organization?
[Unknown] : myCompanyName

What is the name of your City or Locality?
[Unknown] : Washington DC

What is the name of your State or Province?
[Unknown] : DC

What is the two-letter country code for this unit?
[Unknown] : US

You will be prompted for a password. This is your keystore password, as required by Titanium.

Enter key password for <myApp>

Save your keystore and password in a safe place.

Publishing to Google Play

Right-click your project and then choose Publish & Distribute - Android App Store, as shown
in Figure 13-12.

www.it-ebooks.info

359

http://www.it-ebooks.info/

360

BUILDING CROSS-PLATFORM APPS USING TITANIUM

New i >
:gT:::::::ﬂ - New From Template >
Go Into
Node.ACS >
BTN ¢ Distribute - Apple iTunes Store
Build > (3 Distribute - Ad Hoc/Enterprise
Show I :

FIGURE 13-12: Publish menu in Titanium Studio.

For Distribution Location, browse to your desktop for easy access. For Keystore Location,
point to the myApp .keystore file you created earlier in Documents. Enter the keystore
password and key alias you used when you created the keystore. Finally, click Publish. You’'ll
see something similar to Figure 13-13.

8.0.6

Distribute
Package project for distribution to an Android store

Titanium Studio allows you to package your project for distribution to an Android store.

To package your Android app, we need a few pieces of information:

@ Android SDK: | Google APIs (Android 2.3.3) [armeabi] ™

(© Distribution Location: | Usersrobertchen/Desktop [v] [Browse... |

Distribution requires a valid keystore and private key to sign your application.
An optional alias can be specified for the private key, but the alias must have the same
password as the keystore.

(© Keystore Location: | fUsers/robertchen/Documents; v | [New...] | Browse...]

(©) Keystore Password: | ssessscssees
© Key Alias: [therockpc]

 Enable JavaScript Minification

@ [cancel | [Publish |

FIGURE 13-13: Entering keystore information into the Distribute wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13 GOING TO MARKET: DEPLOYING TO THE APP STORE

When the build process is complete, you will see output in the console of Titanium Studio, as
shown in Figure 13-14.

[INFO] : Project built successfully in 27s 834ms Packaging Successful x

| Android Application Packager for 'The Rock PC' completed successfully. Click here to show in file system.

FIGURE 13-14: Success message from Titanium Studio.

Go back to the Developer Console window in your browser and select APK from the left navi-
gation menu, as shown in Figure 13-15.

APK

Store Listing

Pricing & Distribution
In-app Products

Services & APls

FIGURE 13-15: Google Play developer console menu.

Follow the directions provided to upload your APK to Google Play. Once the application is
successfully uploaded, you should see a menu on the top right of your browser indicating the
app is ready to publish. Select Publish This App to release your app on Google Play. It may
take several hours (exact timing will vary) before your app becomes live in the store. See
Figure 13-16.

www.it-ebooks.info

361

http://www.it-ebooks.info/

362 BUILDING CROSS-PLATFORM APPS USING TITANIUM

Ready to publish v

Publish this app

Delete this app

FIGURE 13-16: The Ready to Publish option appears when the store listing is complete.

Summary

Publishing your app to the Apple App Store or the Google Play Store involves similar steps.
You first register for a developer account and then create a certificate to sign your applica-
tion. Next, you create an app record and fill out the metadata for the store listing. Finally, you
create a distribution build in Titanium Studio signed by your certificate and upload it to the
store. All that’s left is to sit back and watch the money roll in!

www.it-ebooks.info

http://www.it-ebooks.info/

Index

A

Account Creation screen, sample, 83
accounts, creating, 17, 188-196
adapter object, 54
addComment function, 158-162, 308
addPhotosToMap function, 253
AJAX, 54
alloy models, extending, 117
Alloy.createController function,
66-67, 69
alloy. s file, 188, 200
Android
getting a token, 296-297
managing logout on, 321-324
support for Google Maps v2, 235-237
Android ActionBar
Android Support for, 237
using for Camera button, 114-116
Android SDK, installing, 10, 13-14
App Store, 355-356. See also distribution
process
Appcelerator Cloud Services. See also
specific topics
about, 15-17
accessing device camera in, 109-110
adding, 116-132
benefits of, 90
configuring, 3-14

configuring push notifications in, 292-293

console, 17-25, 303-306
framework, 90

friends object, 208-209
installing, 3-14

integrating, 31-34. See also user accounts

integrating with user accounts. See user
accounts

modifying sync adapter to support friends,

210-211

modifying sync adapter to support photo

model, 122-124

modifying sync adapters to support user
queries, 209-210

preconfiguring, 96-99

Push Notifications API. See push
notifications

REST API, 25-31

sync adapters, 120-121

website, 3, 16, 96

Appcelerator Community websites, 1, 3
Appcelerator Titanium Alloy

about, 43

adding friends user interface, 200-205

Backbone. jsin, 50-53

creating commonds library in, 197-200

creating widgets, 74-80

data binding with models in, 69-74

finishing ListView, 205-208

model-view data binding, 56-68

Model-View-Controller (MVC) framework,
44-53

sync adapters, 54-56, 116-132

Apple push notifications, 291, 292
applications. See also cross-platform apps,

development process for

creating push notifications library in,
293-300

creating records, 350

cross-platform social photo-sharing, 81-92

flow of, 92

including social. jsin, 287

integrating push notifications in, 300-313

setting up to use Facebook module, 188

signing, 349

updating to be friend- and location-aware,
227-228

approval required parameter, 214-215
app . tss file, 103-104

authenticated method, 180
authentication, Facebook, 195

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

B

backbone model events, 55-56
Backbone. js, 50-53
backbonejssave method, 158-162
Balsamig, designing mockups with, 81-89
binary, 350, 355-356

Button object, 70
buttonContainer, 113
buttonToggle widget, 78

C
callback method, 127
_callback parameter, 179, 312
callbackFunction variable, 154
callbacks, registering, 297-300
Camera API, adding calls to feed controller,
110-111
Camera button, 106, 114-116
Camera feature, 90
cameraButtonClicked function,
128-129, 333
cancelButton, 155
checkPermissions function, 270-271
click event, 70
clicksource property, 257
close function, 188
Cloud.Photos. show () library, 131
Cloud.Reviews.query method, 145
Cloud.Users.Create method, 37-38
code, adding, 198-200
collection objects, creating, 64-68
collections, 50, 142-146
collect name property, 142-143
comment controllers, finishing, 146-148
comment view, cross-platform support in,
140-142
commentButton, 108-109, 151
comment _id property, 147-148
comment . js controller, 139, 140, 146, 152,
157-158, 163, 308, 309
commentRow controller, 142, 147-148
commentRow.xml view, 136-137
comments
about, 91, 135
adding logic to controllers, 139-142
adding models and collections for querying,
142-146

adding new comments to photos, 152-162
creating commentTable view layout,
135-139
deleting, 163-165
finishing comment controllers, 146-148
saving, 158-162
showing comment list, 148-152
commentTable view layout, creating,
135-139
comment . xml view file, 135-139
Commonds library
creating, 197-200
creating for geolocation, 230-233
creating for sharing functions, 265-268
config. jsonfile, 78
controllers
adding 1oadPhotos () method to,
131-133
adding logic to, 139-142
calling from feed. js, 139-140
in Model-View-Controller (MVC), 46-47
controller/view, 70-74
coordinates object, 241

_coords parameter, 235

createAccount function, 184, 187
cross-platform apps, development process for
about, 93
adding Alloy Sync Adapter and Appcelerator
Cloud Services, 116-133
creating projects, 93-96
creating user interfaces, 99-109
integrating camera functionality, 109-114
preconfiguring Appcelerator Cloud Services,
96-99
using Android ActionBar for Camera button,
114-116
cross-platform social photo-sharing application
about, 81
designing mockups with Balsamiq, 81-89
process of, 89-92
cross-platform support, in comment view,
140-142
CRUD, 44
curl utility, 26
currentPhoto object, 140, 159
currentUser.getFriends function,
345-346

www.it-ebooks.info

http://www.it-ebooks.info/

365

INDEX
D F
data-binding Facebook
integrating ListView data-binding with, about, 197
216-223 creating accounts with, 188-196
with models in Appcelerator Titanium Alloy, permissions, 269-276
69-74 sharing to the Album, 273-276, 279-280

model-view, 56-68
dataCollection property, 61, 217
dataFilter function, 217
dataTransform function, 217, 220
default styles, setting for windows/tabs,

103-104
delete event, 163
deleteCommented, 164
destroy function, 163
detail.xml view file, 70
Developer account, registering for, 349
development process, for cross-platform apps.

See cross-platform apps, development

process for
devices

accessing camera in Appcelerator, 109-110

getting GPS information from, 230

installing curl on, 26
distance parameter, 246
distribution process

about, 349-350

Google Play, 356-362

iOS App Store submission, 350-356
DocumentsTitanium Studio

Workspace folder, 12
doFacebookLoginAction function,

190-194
doFilter function, 220
$ variable, 70
doOpen function, 115-116, 141, 155, 321-322
doTransform function, 220
downloadFile function, 290

E
editing
user information in Header section, 316-317
user information style, 317-321
view, 316
else condition, 193
Email, sharing images as attachments, 280-284
event . source object, 77
exports.subscribe function, 300

sharing to the wall, 271-273
social integration with, 91
feed controller
adding Camera API calls to, 110-111
modifying, 128-129
returning to, 333-335
updating, 104-106, 233-235
using photo model in, 125
Feed tab, enabling camera functionality on,
104-106
feed table, adding style to, 112-114
feed. js controller, 110-111, 112, 139-140,
149, 233-235, 241, 246-247, 251-264,
271-273, 333-335
feedRow controller, 111-112, 149
feedRow view, 106-109
feedRow.js, 111-112
feedRow. tss file, 112-114, 240-241
feed.xml file, 104-106, 149, 247-251
fetch method, 131, 147
filter function, 68
filterClicked function, 203, 226
filterTabbedBarClicked method, 252
followBtnClicked function, 205
followers, 197
followers parameter, 213-214
followingBtnClicked function, 205
followUser method, 310-311
friends
about, 197
adding user interface, 200-205
creating friend relationships, 211-212
displaying lists of, 221-223
finding, 91
finding relationships based on user ID, 212
modifying sync adapters to support, 210-211
removing relationships from users, 212-213
sending push notifications when adding,
310-312
working with lists of, 223-227
friends controller, integrating ListView
data-binding with, 217-223

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Friends/All Users screen, 87-88

friends. js controller file, 207, 217, 310
friends.tss file, 205

friends.xml file, 201, 216-217

G

geo.js, 230-233

getCurrentLocation function, 230,
232,234

getFollowers function, 213-214, 306-307

getFriends method, 221

getLoggedIn function, 342

getModelFromSelectedRow function,
224-225

getView () method, 112

Google Cloud Messaging (GCM), 291, 292

Google Maps v2, Android support for, 235-237

Google Play, 356-362. See also distribution
process

GPS information, associating when saving
photos, 229-235

H

handleButtonClicked function, 157

handleCommentButtonClicked
function, 150

handleDeleteRow function, 163-164

handleLogoutBtnClick function,
323-325

handleLogoutMenuClick function, 322

handleNewCommentButtonClicked
function, 141-142

handleProfileImageClick function,
325-326

handleShareButtonClicked function,
271,272

hdrBox class, 319

hdrCount class, 319

hdrLabel dass, 319

Header section, editing user information in,
316-317

http client class, 30

HTTP verbs, 51

|

image download helper function, 273-276
imageContainer, 113

index controller, 181-183, 203
index. js file, 35-36, 62, 66, 68, 101-102,
151, 181-183, 301
index. tss file, 49
index.xml file, 46, 61, 65, 101-102,
115-116,133
InitAdapter, 121
initialize method, 133
initializePushNotifications
function, 301
inputCallback function, 158
installing
Android SDK, 10, 13-14
Appcelerator, 3-14
curl on devices, 26
iOS Simulator, 9
Titanium Command-Line Interface, 10
Titanium on Macs, 4-6
Titanium Studio IDE, 4-6
Xcode, 7-9
i0OS
developer account, 350
getting a token, 295-296
managing logout on, 321-324
signing applications, 350-351
iOS App Store submission process, 350-356
iOS Simulator, 9
isAuthorized method, 342
iTunes Connect record, creating, 351

J

. J s controller, 235

K
keystore, creating for publishing, 358-359

L

Library folder, 10

ListView, 205-208, 216-223

loadComments function, 147

loadPhotos () method, 131-133

loadProfileInformation function,
331-332, 336, 342, 345-346

localStorage setting, 54

_location parameter, 247

locationCallback variable, 233

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

locationCallbackHandler function,
230-231

locations. See maps and locations

logging in/out
of Facebook, 196
managing on Android and i0OS, 321-324
unregistering from push notifications

when, 312-313

for users, 117-119, 185-186

logic, adding to controllers, 139-142

login controller, 124-125, 184-188,
185-186, 190-194

Login screen, 167-177, 324-325

loginSuccessAction function,
182-183, 301

login.xml file, 172,189

longpress event, 163

M

Macs, installing Titanium on, 4-6
Main Application screen, 84-85
Main view, adding content to, 337-338
make property, 58
mapAnnotationClicked function, 257
mapDetail.js, 261
maps and locations
about, 229
associating GPS information when saving
photos, 229-235
displaying maps of photos near your
location, 245-264
displaying photo locations on maps, 235-245
MapView
adding map component to, 238-245
Android Support for ActionBar in, 237
updating user interfaces to show, 247-251
mapview. tss file, 238-245
media, rating, 91
metadata, filling out, 350
mockups, designing with Balsamiq, 81-89
model property, 58
model .attributes property, 147
model . id property, 212
models
about, 50
adding for querying comments, 142-146

367

creating files, 57-64
data binding in Appcelerator Titanium Alloy
with, 69-74

in Model-View-Controller (MVC), 44-45
Model . toJSON () function, 72
model-view data binding, 56-68
Model-View-Controller (MVC), 35, 43, 44-47,

47-53

N

New Photo Comment screen, 86-87
notifications. See push notifications
notifyFollowers function, 309

0

onSwitchChange function, 346-347
onSwitchChangeActive variable, 341
open function, 187-188
openCurrentTabWindow function, 150
options.data property, 212-213, 215
order property, 146

P

parameters variable, 154
permissions, 269-276
per page property, 146
Photo Capture screen, 89
Photo Comments screen, 85-86
photo models
creating, 121-122
modifying, 229
modifying Appcelerator Cloud Services sync
adapter to support, 122-124
using in feed view, 125
Photo Uploading feature, 90-91
photos
adding comments to, 152-162
adding locations to, 233-235
associating GPS information when saving,
229-235
displaying after being processed, 128-129
displaying locations of on maps, 235-245
displaying maps of near your location,
245-264
listing saved photos at startup, 129-131

www.it-ebooks.info

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

photos (continued)
sending push notifications when

commenting on, 308-310
sending push notifications when posting,
306-308
sharing as Email attachments, 280-284
photo-sharing application. See cross-platform
social photo-sharing application
photos.js model, 246-247
prepForFacebookShare function,
270-271
processACSComments function, 144, 145
processACSFriends function, 211
processACSUsers function, 194-195
processImage function, 126-129, 308
processPhoto function, 330-331
processTableClicks function, 150, 258
progressIndicator function, 290
progressWindow. js file, 276-279
properties sync adapter, 54, 59-60
publishing
binary to store, 350
to Google Play, 359-362
from Titanium Studio, 351-355
push notifications
about, 92, 291
changing status of, 346-347
configuring in Appcelerator Cloud Services,
292-293
creating library in applications, 293-300
displaying status of, 344-346
integrating in applications, 300-313
registering for when user logs in, 301-302
sending using ACS console, 303-312
sending when adding friends, 310-312
sending when commenting on photos,
308-310
sending when posting photos, 306-308
setting up on development platform, 292
unregistering from when logging out,
312-313
pushNotifications.js library, 295,
300-313, 323, 344-345
_pushRcvCallback method, 295
pushRegisterError function, 298
pushRegisterSuccess function, 298
pushUnsubscribe function, 312

R

rating media, 91
reauthorizations, 269-276
registering
callbacks, 297-300
for Developer account, 349
for push notifications when user logs in,
301-302
rendering rows, 136-137
requires statement, 101-102, 148
REST API, 25-31
returnParams object, 157
Reviews object, 143, 145
rowIndex property, 203
rows
adding to tables with feedRow
controller, 112
rendering, 136-137

S

Saunders, Aaron K. (author), contact
information for, 2
save method, 127, 131
saveButton, 155, 157
ScrollView, 167-168
sending push notifications. See push
notifications
sendTwitterImage function, 287
setProgressValue method, 276
Settings screen, sample, 88-89
Settings tab
about, 315
adding content to Main view in, 337-338
adding performance enhancements, 329-347
additional information from user account,
335-337
changing push notification status, 346-347
displaying push notification status, 344-346
editing user information in Header section,
316-317
editing user information style, 317-321
editing view, 316
handling logout on Android and iOS,
321-324
handling switch initialization values,
341-343

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX

platform-specific user interface for switch
control, 338-341
returning to £eed controller, 333-335
returning to Login screen, 324-325
setting user’s profile picture, 325-329
settings. js file, 322-325, 331-332,
340-342, 344-347
settings.tss file, 316-319, 338-339
settings.xml file, 316-319, 337-338, 340
setup
applications to use Facebook module, 188
index.xml view to support ActionBar, 115
push notifications on development
platform, 292
Titanium, 3-10
Twitter Developer account, 285
shareButton, 108-109
shareImage function, 285-287
share.js, 271-273
shareOptions method, 273
shareTwitterPhoto function, 288-290
sharing. See also Email; Facebook; Twitter
creating Commond S library for sharing
functions, 265-268
to Facebook albums, 279-280
Facebook permissions/reauthorization,
269-276
images as Email attachments, 280-284
progressWindow library, 276-279
on Twitter, 284-290
sharing. js file, 265-268, 269-276,
288-290, 324
sharingOptions method, 268
showCreateAccountCreation
function, 184
showLocalImages function-253, 252
showLoginAction function, 184
signing applications, 349-351
signing up
for Google Play Developer account,
356-358
for iOS developer account, 350
social photo-sharing application. See cross-
platform social photo-sharing application
SocialIntegrations/external
AccountLogin method, 189

social.js
adding to your project, 285
including in application, 287
integrating Twitter with, 284-290
sql setting, 54
startup, checking for Facebook authentication
on, 195
Status method, 193
style, adding to feed table, 112-114
switch control, platform-specific user interface
for, 338-341
switch initialization values, managing, 341-343
switch statement, 342
sync adapters
about, 54
Appcelerator Cloud Services, 120-124
Appcelerator Titanium Alloy, 54-56,
116-132
backbone model events, 55-56
basic construction of, 54-55
modifying to support friends, 210-211
modifying to support photo model, 122-124
modifying to support user queries,
209-210

T

tab group files, creating, 99-104
tabgroup object, 115
tableRow, 163
tables
adding rows to TableView, 106-109
adding rows to with feedRow controller, 112
updating, 158-162
TableView, 56, 62, 63, 68, 69, 106-109
TableViewRow object, 112
textArea, 152-153, 155, 157
tiapp.xml file, 293-295, 344
ti.cloud object, 117,121
ti.cloud. js function, 346
Ti.Geolocation library, 230
Ti.Network.HTTPClient, 30
Titanium
installing command-line interface, 10
installing on Macs, 4-6
setting up, 3-10

www.it-ebooks.info

369

http://www.it-ebooks.info/

BUILDING CROSS-PLATFORM APPS USING TITANIUM

Titanium Studio IDE
installing, 4-6
publishing from, 351-355
website, 4
Titanium.Cloud module, 34
Titanium.Media.openPhotoGallery
method, 109
Titanium.Media.showCamera method,
109-110
Titanium.UI.ListView, 200-205
toggleButtonByIDClicked function, 78
transform function, 62, 68
Twitter
about, 197
integrating with social. js module,
284-290
setting up Developer account, 285
type property, 142-143

U

underscore. js, 50
unfollowUser function, 226
updateFacebookLoginAction
function, 195
updateFollowers, 224
updateFollowersFriendsLists
function, 218-219
updating
applications to be friend- and location-aware,
227-228
feed controller, 104-106, 233-235
Feed view, 104-106
index controller, 181-183
tables, 158-162
user interface to show Map view, 247-251
user model, 177-181
users with Facebook information, 194-195
uploading binary to App Store, 355-356
user accounts
about, 167
account creation with Facebook, 188-196
adding login user interface, 167-177
additional information from, 335-337
creating, 186-188
creating login controller, 184-188
updating index controller, 181-183
updating user model, 177-181

User Accounts feature, 90
user create account method, 178-179
user ID, finding friend relationships based
on, 212
user interfaces
creating, 99-109
friends, 200-205
platform-specific for switch control,
338-341
updating to show Map view, 247-251
user login, with user model, 124-125
User Login screen, 82-83
user logout method, 179
user management, 315. See also Settings tab
user models
creating, 116-117
extending to support user-specific friends
functionality, 213-216
Facebook method in, 189-190
updating, 177-181
user login with, 124-125
user queries, modifying Appcelerator Cloud
Services sync adapter to support, 209-210
userActionResponseHandler, 187
User.getFriends method, 227, 336
_userInfo parameter, 179
user.js,117-119
userLoggedInAction method, 181-182
userNotLoggedInAction method,
181-183
users
displaying all, 218-221
editing information in Header section,
316-317
editing style of information, 317-321
logging in/out, 117-119, 185-186
management methods, 178-181
registering for push notifications when they
log in, 301-302
removing friend relationships from,
212-213
setting profile picture for, 325-329
updating with Facebook information,
194-195
working with, 223-227
User . showMe method, 335-336

www.it-ebooks.info

http://www.it-ebooks.info/

INDEX 371

\Y A\

value property, 186 where clause, 227

view folder, 56, 201 widget.js file, 76, 79

views widgets, creating, 74-80
editing, 316 widget .xml file, 76-77
in Model-View-Controller (MVC), 45-46
styling to match mockups, 137-139 X

view.xml file, 64-65, 79 Xcode, installing, 7-9

www.it-ebooks.info

http://www.it-ebooks.info/

372 BUILDING CROSS-PLATFORM APPS USING TITANIUM

www.it-ebooks.info

http://www.it-ebooks.info/

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

www.it-ebooks.info

http://www.wiley.com/go/eula
http://www.it-ebooks.info/

	Title Page
	Copyright Page
	About the Author
	Contents
	Introduction
	Chapter 1: Installing and Configuring Appcelerator
	Setting Up Titanium
	Installing Titanium on the Mac
	Installing Titanium Studio IDE
	Installing Xcode
	Installing the iOS Simulator
	Installing the Titanium Command-Line Interface to Use an Alternate IDE
	Installing the Android SDK

	Installing Titanium Studio on Windows
	Installing Titanium Studio
	Installing Android SDK

	Summary

	Chapter 2: Introducing Appcelerator Cloud Services
	Using the Appcelerator Cloud Services Console
	Using Appcelerator Cloud Services REST API
	Installing curl on a Device
	Simple Test with the REST API

	Integrating Appcelerator Cloud Services
	Simple Example of Integrating Appcelerator Cloud Services
	Summary

	Chapter 3: Appcelerator Titanium Alloy Overview
	Understanding the Model-View-Controller (MVC) Framework
	Using Appcelerator Alloy with the MVC Framework
	Backbone.js
	Backbone.js in Alloy: Models and Collections

	Using Sync Adapters
	Basic Sync Adapter Construction
	Backbone Model Events

	Model-View Data Binding
	Demo Project for Model View Binding
	Creating the Model File
	Creating the Collection Object

	Data Binding with Models in Appcelerator Titanium Alloy
	Updating the cars.js Controller File
	Creating the New Controller/View for the Detail Display
	Completing the Controller for the Detail View

	Creating Widgets
	Creating a More Complex Widget

	Summary

	Chapter 4: Building a Cross-Platform Social Photo-Sharing Application
	Using Balsamiq to Design Mockups
	Walking Through the Phone-Sharing App
	User Accounts
	Camera
	Photo Uploading
	Social Integration with Facebook
	Finding Friends
	Commenting and Rating of Media
	Push Notifications
	Application Flow

	Summary

	Chapter 5: Development Process for Cross-Platform Apps
	Creating the Project for This Chapter
	Preconfiguring Appcelerator Cloud Services
	Creating the User Interface
	Creating the Tab Group Files
	Enabling the Camera Functionality on the Feed Tab
	Adding a Custom Table Row to TableView

	Integrating the Camera Functionality into the Application
	Accessing the Device Camera in Appcelerator
	Adding Camera API Calls to Feed Controller
	Revisiting the FeedRow Controller
	Revisiting the Feed Controller to Add the Rows to the Table
	Adding Some Style to the Feed Table

	Using the Android ActionBar for the Camera Button
	Setting Up the index.xml View to Support the ActionBar
	Modifying the index.xml View to Support the ActionBar

	Adding the Alloy Sync Adapter and Appcelerator Cloud Services
	Creating the User Model
	Extending Alloy Models
	Logging the User In
	Creating Appcelerator Cloud Service Sync Adapter
	Creating the Photo Model
	Modifying the ACS Sync Adapter to Support the Photo Model
	Model and Sync Adapter Working Together

	Summary

	Chapter 6: Integrating Comments
	Creating the Comment Table View Layout
	Rendering the Rows Using a Different View and Controller
	Styling the Views to Match the Mockups

	Adding Logic to the Controllers
	Calling the New Controller from feed.js
	Coding the comment.js Controller
	Cross-Platform Support in Comment View
	Coding the commentRow Controller

	Adding Models and Collections for Querying Comments
	Finishing the Comment Controllers
	The commentRow Controller

	Connecting the Dots . . . Showing the Comment List
	Back to the feed and feedRow Controllers

	Adding a New Comment to a Photo
	Creating a New Comment Controller and View
	Adding Code to the Comment Input Controller
	Back to the Comment.js Controller
	Saving the Comment and Updating the Table

	Deleting Comments
	Summary

	Chapter 7: Integrating User Accounts with Appcelerator Cloud Services
	Adding the Login User Interface
	Updating the User Model
	User Create Account Method
	User Logout Method
	Additional User Management Methods

	Updating the Index Controller
	Set Up the Basics in the Index Controller

	Creating the Login Controller
	Logging in the User
	Creating the User Account

	Using Facebook for Account Creation
	Setting Up an Application to Use the Facebook Module
	Facebook Button in the login.xml File
	Facebook Method in the User Model
	Facebook Handler in Login Controller
	Updating User with Facebook Information
	Check for Facebook Authentication on Startup
	Logging Out of Facebook

	Summary

	Chapter 8: Working with Friends and Followers
	Creating the CommonJS Library in Alloy
	Adding the Code

	Adding the Friends User Interface
	Finishing Up the ListView with Style

	Introduction to Appcelerator Cloud Services Friends Object
	Modifying the ACS Sync Adapter to Support User Queries
	Modifying the ACS Sync Adapter to Support Friends
	Creating the Friend Relationship
	Finding Friend Relationships Based on a User’s ID
	Removing Friend Relationships from a User
	Extending the User Model to Support User-Specific Friends Functionality

	Integrating ListView Data-Binding with Friends Collections
	Revisiting the friends.xml File

	Integrating ListView Data-Binding with the Friends Controller
	Displaying All Users
	Displaying the Friends List

	Working with User and Friends Lists
	Removing a Friend from the Friends List

	Updating the Application to Be Friend- and Location-Aware
	Summary

	Chapter 9: Working with Maps and Locations
	Associating GPS Information When Saving a Photo
	Modifying the Photo Model
	Getting GPS Information from a Device
	Creating a CommonJS Library for Geolocation
	Updating the Feed Controller to Add Location to a Photo

	Displaying the Photo Location on a Map
	Android Support for Google Maps v2
	Adding the Map Component to MapView XML

	Displaying a Map of Photos Near Your Location
	Querying ACS Photo Objects Using Your Current Location
	Updating the User Interface to Show a Map View
	Changes in the feed.js Controller
	Responding to Clicks on Map Annotations

	Summary

	Chapter 10: Sharing via Facebook, Email, and Twitter
	Creating the CommonJS Library for Sharing Functions
	Facebook Permissions and Reauthorization
	Sharing to the Facebook Wall
	Sharing to the Facebook Album
	Revisiting and Refactoring the Progress Window Library
	Sharing to a Facebook Album

	Sharing an Image as an Email Attachment
	Twitter Integration with the social.js Module
	Setting Up Your Twitter Developer Account
	Adding social.js to Your Project
	Adding the shareImage Function
	Including the social.js Library in the Application
	Adding Functionality to the sharing.js Library

	Summary

	Chapter 11: Push Notifications
	Setting Up Push Notifications on Your Development Platform
	Apple Push Notifications Configuration
	Google Push Notifications Configuration

	Configuring Push Notifications in Appcelerator Cloud Services
	Creating the Push Notifications Library in an Application
	Creating the pushNotifications.js Library
	Getting the iOS Token
	Getting the Android Token
	Registering Callbacks

	Integrating Push in Your Application
	Registering for Push Notifications When the User Logs In
	Sending Notifications Using the Appcelerator Cloud Services Console
	Sending a Push Notification
	Sending a Notification When Posting a Photo
	Sending a Notification When Commenting on Photos
	Sending a Notification When Adding a New Friend
	Unregistering from Push Notifications When Logging Out

	Further Integration of Push Notifications in Your Application
	Summary

	Chapter 12: Settings and User Management
	Getting Started: View, Style, Controller
	Editing the View
	Editing the User Information in the Header Section
	Editing the User Information Style

	Handling Logout on Android and iOS
	Logging the User Out
	Logging Out of Appcelerator Push Notifications
	Logging Out from Appcelerator Cloud Services
	Logging Out from Social Media

	Returning to the Login Screen
	Setting the User’s Profile Picture

	Adding a Few Performance Enhancements
	Returning to the Feed Controller for Performance and UI Enhancement
	Additional Information from the User Account
	Adding Content to the Main View in the Settings Tab
	Platform-Specific User Interface for Switch Control
	Handling the Switch Initialization Values
	Displaying Push Notification Status
	Changing the Push Notification Status

	Summary

	Chapter 13: Going to Market: Deploying to the App Store and to Google Play
	Process Overview
	Registering for a Developer Account
	Signing Your Application
	Creating an App Record and Filling Out Metadata
	Publishing Your Binary to the Store

	iOS App Store Submission Process
	Signing Up for an iOS Developer Account
	Signing Your iOS Application
	Creating an iTunes Connect Record
	Publishing from Titanium Studio

	Uploading Your Binary to the App Store
	Google Play Submission Process
	Signing Up for a Google Play Developer Account
	Generating a Keystore for Publishing

	Publishing to Google Play
	Summary

	Index
	Wiley End User License Agreement

s

